-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathIFOF_fractal_dimension.py
95 lines (78 loc) · 4.33 KB
/
IFOF_fractal_dimension.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import numpy as np
from fractal_dimension import (compute_fractal_dimension,
plot_fractal_dimension)
import nibabel as nib
from glob import glob
import matplotlib.pyplot as plt
from scipy.stats import ttest_rel
def load_compute(filename, box_size_max=None, box_size=None):
image = nib.load(filename).get_data()
if box_size_max is None:
box_size_max = np.min(image.shape) / 3.0
fractal_dimension, box_size, counts = compute_fractal_dimension(image,
n_steps=n_steps,
box_size_max=box_size_max,
box_size=box_size,
verbose=False)
return fractal_dimension
if __name__ == '__main__':
segmented_by_tractseg = True
box_size_max = 3.0
box_size = np.arange(1, 5)
if segmented_by_tractseg:
subjects_path = glob('bundles/bundle_masks_IFOF/sub-*') # segmented by Tractseg
else:
subjects_path = glob('bundles/trk2mask_IFOFMSK/sub-*') # manually segmented by Pietro
subjects_id = sorted([sp[-6:] for sp in subjects_path])
if segmented_by_tractseg:
subjects_id.remove('991267') # outlier: TractSeg fails in segmenting
template_gt_tractseg = 'bundles/trk2mask_GTMSK/sub-%s/sub-%s_var-GTMSK_IFO_left.nii.gz' # Groud Truth TractSeg
# template_gt_tractseg = 'bundles/trk2mask_GTMSK/sub-%s/sub-%s_var-GTMSK_AF_left.nii.gz' # Groud Truth TractSeg
template_gt_pietro = 'bundles/trk2mask_IFOFMSK/sub-%s/sub-%s_var-IFOFMSK_ioff.left.nii.gz' # GRound Truth Pietro
if segmented_by_tractseg:
template_tractseg = 'bundles/bundle_masks_IFOF/sub-%s/IFO_left.nii.gz' # Segmented by TractSeg
# template_tractseg = 'bundles/bundle_masks_IFOF/sub-%s/AF_left.nii.gz' # Segmented by TractSeg
n_steps = 50
fd_gt_tractseg = np.zeros(len(subjects_id))
fd_gt_pietro = np.zeros(len(subjects_id))
if segmented_by_tractseg:
fd_tractseg = np.zeros(len(subjects_id))
for i, sid in enumerate(subjects_id):
filename_gt_tractseg = template_gt_tractseg % (sid, sid)
fd_gt_tractseg[i] = load_compute(filename_gt_tractseg,
box_size_max, box_size)
print("%s - FD = %s" % (filename_gt_tractseg, fd_gt_tractseg[i]))
filename_gt_pietro = template_gt_pietro % (sid, sid)
fd_gt_pietro[i] = load_compute(filename_gt_pietro,
box_size_max, box_size)
print("%s - FD = %s" % (filename_gt_pietro, fd_gt_pietro[i]))
if segmented_by_tractseg:
filename_tractseg = template_tractseg % (sid)
fd_tractseg[i] = load_compute(filename_tractseg,
box_size_max, box_size)
print("%s - FD = %s" % (filename_tractseg, fd_tractseg[i]))
print("")
print("Mean/Std Fractal Dimension for GT Tractseg: %s / %s" % (fd_gt_tractseg.mean(), fd_gt_tractseg.std()))
print("Mean/Std Fractal Dimension for GT Pietro: %s / %s" % (fd_gt_pietro.mean(), fd_gt_pietro.std()))
if segmented_by_tractseg:
print("Mean/Std Fractal Dimension for Tractseg: %s / %s" % (fd_tractseg.mean(), fd_tractseg.std()))
t, p_value = ttest_rel(fd_gt_tractseg, fd_gt_pietro)
print("Paired Two-sample t-test between GT TractSeg and GT Pietro: p-value=%s" % p_value)
if segmented_by_tractseg:
t2, p_value2 = ttest_rel(fd_tractseg, fd_gt_pietro)
print("Paired Two-sample t-test between TractSeg and GT Pietro: p-value=%s" % p_value2)
plt.ion()
plt.figure()
n_bins = 20
if segmented_by_tractseg:
tmp = np.concatenate([fd_gt_tractseg, fd_gt_pietro, fd_tractseg])
# tmp = np.concatenate([fd_gt_tractseg, fd_tractseg])
else:
tmp = np.concatenate([fd_gt_tractseg, fd_gt_pietro])
bins = np.linspace(tmp.min(), tmp.max(), n_bins)
plt.hist(fd_gt_tractseg, bins=bins, color='r', label='GT Tractseg', alpha=0.5)
plt.hist(fd_gt_pietro, bins=bins, color='b', label='GT Pietro', alpha=0.5)
if segmented_by_tractseg:
plt.hist(fd_tractseg, bins=bins, color='g', label='Tractseg', alpha=0.5)
plt.legend(loc='best', numpoints=1)
plt.xlabel('Fractal Dimension')