forked from GMvandeVen/brain-inspired-replay
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparam_stamp.py
137 lines (120 loc) · 6.64 KB
/
param_stamp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from data.load import get_multitask_experiment
from utils import checkattr
def get_param_stamp_from_args(args):
'''To get param-stamp a bit quicker.'''
from define_models import define_autoencoder, define_classifier
# -get configurations of experiment
config = get_multitask_experiment(
name=args.experiment, scenario=args.scenario, tasks=args.tasks, data_dir=args.d_dir, only_config=True,
normalize=args.normalize if hasattr(args, "normalize") else False, verbose=False,
)
# -get model architectures
model = define_autoencoder(args=args, config=config, device='cpu') if checkattr(
args,'feedback'
) else define_classifier(args=args, config=config, device='cpu')
if checkattr(args, 'feedback'):
model.lamda_pl = 1. if not hasattr(args, 'pl') else args.pl
train_gen = (hasattr(args, 'replay') and args.replay=="generative" and not checkattr(args, 'feedback'))
if train_gen:
generator = define_autoencoder(args=args, config=config, device='cpu', generator=True,
convE=model.convE if hasattr(args, "hidden") and args.hidden else None)
# -extract and return param-stamp
model_name = model.name
replay_model_name = generator.name if train_gen else None
param_stamp = get_param_stamp(args, model_name, replay=(hasattr(args, "replay") and not args.replay=="none"),
replay_model_name=replay_model_name, verbose=False)
return param_stamp
def get_param_stamp(args, model_name, verbose=True, replay=False, replay_model_name=None):
'''Based on the input-arguments, produce a "parameter-stamp".'''
# -for task
multi_n_stamp = "{n}-{set}{of}".format(
n=args.tasks, set=args.scenario, of="OL" if checkattr(args, 'only_last') else ""
) if hasattr(args, "tasks") else ""
task_stamp = "{exp}{norm}{aug}{multi_n}".format(
exp=args.experiment, norm="-N" if hasattr(args, 'normalize') and args.normalize else "",
aug="+" if hasattr(args, "augment") and args.augment else "", multi_n=multi_n_stamp
)
if verbose:
print(" --> task: "+task_stamp)
# -for model
model_stamp = model_name
if verbose:
print(" --> model: "+model_stamp)
# -for hyper-parameters
pre_conv = ""
if (checkattr(args, "pre_convE") or checkattr(args, "pre_convD")) and (hasattr(args, 'depth') and args.depth>0):
ltag = "" if not hasattr(args, "convE_ltag") or args.convE_ltag=="none" else "-{}".format(args.convE_ltag)
pre_conv = "-pCvE{}".format(ltag) if args.pre_convE else "-pCvD"
pre_conv = "-pConv{}".format(ltag) if args.pre_convE and checkattr(args, "pre_convD") else pre_conv
freeze_conv = ""
if (checkattr(args, "freeze_convD") or checkattr(args, "freeze_convE")) and hasattr(args, 'depth') and args.depth>0:
freeze_conv = "-fCvE" if checkattr(args, "freeze_convE") else "-fCvD"
freeze_conv = "-fConv" if checkattr(args, "freeze_convE") and checkattr(args, "freeze_convD") else freeze_conv
hyper_stamp = "{i_e}{num}-lr{lr}{lrg}-b{bsz}{pretr}{freeze}{reinit}".format(
i_e="e" if args.iters is None else "i", num=args.epochs if args.iters is None else args.iters, lr=args.lr,
lrg=("" if args.lr==args.lr_gen else "-lrG{}".format(args.lr_gen)) if (
hasattr(args, "lr_gen") and hasattr(args, "replay") and args.replay=="generative" and
(not checkattr(args, "feedback"))
) else "",
bsz=args.batch, pretr=pre_conv, freeze=freeze_conv, reinit="-R" if checkattr(args, 'reinit') else ""
)
if verbose:
print(" --> hyper-params: " + hyper_stamp)
# -for EWC / SI
if (checkattr(args, 'ewc') and args.ewc_lambda>0) or (checkattr(args, 'si') and args.si_c>0):
ewc_stamp = "EWC{l}-{fi}{o}".format(
l=args.ewc_lambda, fi="{}".format("N" if args.fisher_n is None else args.fisher_n),
o="-O{}".format(args.gamma) if checkattr(args, 'online') else "",
) if (checkattr(args, 'ewc') and args.ewc_lambda>0) else ""
si_stamp = "SI{c}-{eps}".format(c=args.si_c, eps=args.epsilon) if (checkattr(args,'si') and args.si_c>0) else ""
both = "--" if (checkattr(args,'ewc') and args.ewc_lambda>0) and (checkattr(args,'si') and args.si_c>0) else ""
if verbose and checkattr(args, 'ewc') and args.ewc_lambda>0:
print(" --> EWC: " + ewc_stamp)
if verbose and checkattr(args, 'si') and args.si_c>0:
print(" --> SI: " + si_stamp)
ewc_stamp = "--{}{}{}".format(ewc_stamp, both, si_stamp) if (
(checkattr(args, 'ewc') and args.ewc_lambda>0) or (checkattr(args, 'si') and args.si_c>0)
) else ""
# -for XdG
xdg_stamp = ""
if (checkattr(args, "xdg") and args.xdg_prop > 0):
xdg_stamp = "--XdG{}".format(args.xdg_prop)
if verbose:
print(" --> XdG: " + "gating = {}".format(args.xdg_prop))
# -for replay
if replay:
replay_stamp = "{H}{rep}{bat}{distil}{model}{gi}".format(
H="" if not args.replay=="generative" else (
"H" if (checkattr(args, "hidden") and hasattr(args, 'depth') and args.depth>0) else ""
),
rep="gen" if args.replay=="generative" else args.replay,
bat="" if (
(not hasattr(args, 'batch_replay')) or (args.batch_replay is None) or args.batch_replay==args.batch
) else "-br{}".format(args.batch_replay),
distil="-Di{}".format(args.temp) if args.distill else "",
model="" if (replay_model_name is None) else "-{}".format(replay_model_name),
gi="-gi{}".format(args.g_iters) if (
hasattr(args, "g_iters") and (replay_model_name is not None) and (not args.iters==args.g_iters)
) else "",
)
if verbose:
print(" --> replay: " + replay_stamp)
replay_stamp = "--{}".format(replay_stamp) if replay else ""
# -for choices regarding reconstruction loss
if checkattr(args, "feedback"):
recon_stamp = "--{}{}".format(
"H_" if checkattr(args, "hidden") and hasattr(args, 'depth') and args.depth>0 else "", args.recon_loss
)
elif hasattr(args, "replay") and args.replay=="generative":
recon_stamp = "--{}".format(args.recon_loss)
else:
recon_stamp = ""
# --> combine
param_stamp = "{}--{}--{}{}{}{}{}{}".format(
task_stamp, model_stamp, hyper_stamp, ewc_stamp, xdg_stamp, replay_stamp,
recon_stamp, "-s{}".format(args.seed) if not args.seed==0 else "",
)
## Print param-stamp on screen and return
if verbose:
print(param_stamp)
return param_stamp