diff --git a/docs/changelog/118380.yaml b/docs/changelog/118380.yaml new file mode 100644 index 0000000000000..8b26c871fb172 --- /dev/null +++ b/docs/changelog/118380.yaml @@ -0,0 +1,5 @@ +pr: 118380 +summary: Restore original "is within leaf" value in `SparseVectorFieldMapper` +area: Mapping +type: bug +issues: [] diff --git a/docs/reference/quickstart/aggs-tutorial.asciidoc b/docs/reference/quickstart/aggs-tutorial.asciidoc new file mode 100644 index 0000000000000..0a8494c3eb75d --- /dev/null +++ b/docs/reference/quickstart/aggs-tutorial.asciidoc @@ -0,0 +1,2184 @@ +[[aggregations-tutorial]] +== Analyze eCommerce data with aggregations using Query DSL +++++ +Basics: Analyze eCommerce data with aggregations +++++ + +This hands-on tutorial shows you how to analyze eCommerce data using {es} <> with the `_search` API and Query DSL. + +You'll learn how to: + +* Calculate key business metrics such as average order value +* Analyze sales patterns over time +* Compare performance across product categories +* Track moving averages and cumulative totals + +[discrete] +[[aggregations-tutorial-requirements]] +=== Requirements + +You'll need: + +. A running instance of <>, either on {serverless-full} or together with {kib} on Elastic Cloud Hosted/Self Managed deployments. +** If you don't have a deployment, you can run the following command in your terminal to set up a <>: ++ +[source,sh] +---- +curl -fsSL https://elastic.co/start-local | sh +---- +// NOTCONSOLE +. The {kibana-ref}/get-started.html#gs-get-data-into-kibana[sample eCommerce data] loaded into {es}. To load sample data follow these steps in your UI: +* Open the *Integrations* pages by searching in the global search field. +* Search for `sample data` in the **Integrations** search field. +* Open the *Sample data* page. +* Select the *Other sample data sets* collapsible. +* Add the *Sample eCommerce orders* data set. +This will create and populate an index called `kibana_sample_data_ecommerce`. + +[discrete] +[[aggregations-tutorial-inspect-data]] +=== Inspect index structure + +Before we start analyzing the data, let's examine the structure of the documents in our sample eCommerce index. Run this command to see the field <>: + +[source,console] +---- +GET kibana_sample_data_ecommerce/_mapping +---- +// TEST[skip:Using Kibana sample data] + +The response shows the field mappings for the `kibana_sample_data_ecommerce` index. + +.Example response +[%collapsible] +============== +[source,console-response] +---- +{ + "kibana_sample_data_ecommerce": { + "mappings": { + "properties": { + "category": { + "type": "text", + "fields": { <1> + "keyword": { + "type": "keyword" + } + } + }, + "currency": { + "type": "keyword" + }, + "customer_birth_date": { + "type": "date" + }, + "customer_first_name": { + "type": "text", + "fields": { + "keyword": { + "type": "keyword", + "ignore_above": 256 + } + } + }, + "customer_full_name": { + "type": "text", + "fields": { + "keyword": { + "type": "keyword", + "ignore_above": 256 + } + } + }, + "customer_gender": { + "type": "keyword" + }, + "customer_id": { + "type": "keyword" + }, + "customer_last_name": { + "type": "text", + "fields": { + "keyword": { + "type": "keyword", + "ignore_above": 256 + } + } + }, + "customer_phone": { + "type": "keyword" + }, + "day_of_week": { + "type": "keyword" + }, + "day_of_week_i": { + "type": "integer" + }, + "email": { + "type": "keyword" + }, + "event": { + "properties": { + "dataset": { + "type": "keyword" + } + } + }, + "geoip": { + "properties": { <2> + "city_name": { + "type": "keyword" + }, + "continent_name": { + "type": "keyword" + }, + "country_iso_code": { + "type": "keyword" + }, + "location": { + "type": "geo_point" <3> + }, + "region_name": { + "type": "keyword" + } + } + }, + "manufacturer": { + "type": "text", + "fields": { + "keyword": { + "type": "keyword" + } + } + }, + "order_date": { + "type": "date" + }, + "order_id": { + "type": "keyword" + }, + "products": { + "properties": { <4> + "_id": { + "type": "text", + "fields": { + "keyword": { + "type": "keyword", + "ignore_above": 256 + } + } + }, + "base_price": { + "type": "half_float" + }, + "base_unit_price": { + "type": "half_float" + }, + "category": { + "type": "text", + "fields": { + "keyword": { + "type": "keyword" + } + } + }, + "created_on": { + "type": "date" + }, + "discount_amount": { + "type": "half_float" + }, + "discount_percentage": { + "type": "half_float" + }, + "manufacturer": { + "type": "text", + "fields": { + "keyword": { + "type": "keyword" + } + } + }, + "min_price": { + "type": "half_float" + }, + "price": { + "type": "half_float" + }, + "product_id": { + "type": "long" + }, + "product_name": { + "type": "text", + "fields": { + "keyword": { + "type": "keyword" + } + }, + "analyzer": "english" + }, + "quantity": { + "type": "integer" + }, + "sku": { + "type": "keyword" + }, + "tax_amount": { + "type": "half_float" + }, + "taxful_price": { + "type": "half_float" + }, + "taxless_price": { + "type": "half_float" + }, + "unit_discount_amount": { + "type": "half_float" + } + } + }, + "sku": { + "type": "keyword" + }, + "taxful_total_price": { + "type": "half_float" + }, + "taxless_total_price": { + "type": "half_float" + }, + "total_quantity": { + "type": "integer" + }, + "total_unique_products": { + "type": "integer" + }, + "type": { + "type": "keyword" + }, + "user": { + "type": "keyword" + } + } + } + } +} +---- +<1> `fields`: Multi-field mapping that allows both full text and exact matching +<2> `geoip.properties`: Object type field containing location-related properties +<3> `geoip.location`: Geographic coordinates stored as geo_point for location-based queries +<4> `products.properties`: Nested structure containing details about items in each order +============== + +The sample data includes the following <>: + +* <> and <> for text fields +** Most `text` fields have a `.keyword` subfield for exact matching using <> +* <> for date fields +* 3 <> types: +** `integer` for whole numbers +** `long` for large whole numbers +** `half_float` for floating-point numbers +* <> for geographic coordinates +* <> for nested structures such as `products`, `geoip`, `event` + +Now that we understand the structure of our sample data, let's start analyzing it. + +[discrete] +[[aggregations-tutorial-basic-metrics]] +=== Get key business metrics + +Let's start by calculating important metrics about orders and customers. + +[discrete] +[[aggregations-tutorial-order-value]] +==== Get average order size + +Calculate the average order value across all orders in the dataset using the <> aggregation. + +[source,console] +---- +GET kibana_sample_data_ecommerce/_search +{ + "size": 0, <1> + "aggs": { + "avg_order_value": { <2> + "avg": { <3> + "field": "taxful_total_price" + } + } + } +} +---- +// TEST[skip:Using Kibana sample data] +<1> Set `size` to 0 to avoid returning matched documents in the response and return only the aggregation results +<2> A meaningful name that describes what this metric represents +<3> Configures an `avg` aggregation, which calculates a simple arithmetic mean + +.Example response +[%collapsible] +============== +[source,console-result] +---- +{ + "took": 0, + "timed_out": false, + "_shards": { + "total": 1, + "successful": 1, + "skipped": 0, + "failed": 0 + }, + "hits": { + "total": { + "value": 4675, <1> + "relation": "eq" + }, + "max_score": null, + "hits": [] <2> + }, + "aggregations": { + "avg_order_value": { <3> + "value": 75.05542864304813 <4> + } + } +} +---- +// TEST[skip:Using Kibana sample data] +<1> Total number of orders in the dataset +<2> `hits` is empty because we set `size` to 0 +<3> Results appear under the name we specified in the request +<4> The average order value is calculated dynamically from all the orders in the dataset +============== + +[discrete] +[[aggregations-tutorial-order-stats]] +==== Get multiple order statistics at once + +Calculate multiple statistics about orders in one request using the <> aggregation. + +[source,console] +---- +GET kibana_sample_data_ecommerce/_search +{ + "size": 0, + "aggs": { + "order_stats": { <1> + "stats": { <2> + "field": "taxful_total_price" + } + } + } +} +---- +// TEST[skip:Using Kibana sample data] +<1> A descriptive name for this set of statistics +<2> `stats` returns count, min, max, avg, and sum at once + +.Example response +[%collapsible] +============== +[source,console-result] +---- +{ + "aggregations": { + "order_stats": { + "count": 4675, <1> + "min": 6.98828125, <2> + "max": 2250, <3> + "avg": 75.05542864304813, <4> + "sum": 350884.12890625 <5> + } + } +} +---- +// TEST[skip:Using Kibana sample data] +<1> `"count"`: Total number of orders in the dataset +<2> `"min"`: Lowest individual order value in the dataset +<3> `"max"`: Highest individual order value in the dataset +<4> `"avg"`: Average value per order across all orders +<5> `"sum"`: Total revenue from all orders combined +============== + +[TIP] +==== +The <> is more efficient than running individual min, max, avg, and sum aggregations. +==== + +[discrete] +[[aggregations-tutorial-sales-patterns]] +=== Analyze sales patterns + +Let's group orders in different ways to understand sales patterns. + +[discrete] +[[aggregations-tutorial-category-breakdown]] +==== Break down sales by category + +Group orders by category to see which product categories are most popular, using the <> aggregation. + +[source,console] +---- +GET kibana_sample_data_ecommerce/_search +{ + "size": 0, + "aggs": { + "sales_by_category": { <1> + "terms": { <2> + "field": "category.keyword", <3> + "size": 5, <4> + "order": { "_count": "desc" } <5> + } + } + } +} +---- +// TEST[skip:Using Kibana sample data] +<1> Name reflecting the business purpose of this breakdown +<2> `terms` aggregation groups documents by field values +<3> Use <> field for exact matching on text fields +<4> Limit to top 5 categories +<5> Order by number of orders (descending) + +.Example response +[%collapsible] +============== +[source,console-result] +---- +{ + "took": 4, + "timed_out": false, + "_shards": { + "total": 5, + "successful": 5, + "skipped": 0, + "failed": 0 + }, + "hits": { + "total": { + "value": 4675, + "relation": "eq" + }, + "max_score": null, + "hits": [] + }, + "aggregations": { + "sales_by_category": { + "doc_count_error_upper_bound": 0, <1> + "sum_other_doc_count": 572, <2> + "buckets": [ <3> + { + "key": "Men's Clothing", <4> + "doc_count": 2024 <5> + }, + { + "key": "Women's Clothing", + "doc_count": 1903 + }, + { + "key": "Women's Shoes", + "doc_count": 1136 + }, + { + "key": "Men's Shoes", + "doc_count": 944 + }, + { + "key": "Women's Accessories", + "doc_count": 830 + } + ] + } + } +} +---- +// TEST[skip:Using Kibana sample data] +<1> Due to Elasticsearch's distributed architecture, when <> run across multiple shards, the doc counts may have a small margin of error. This value indicates the maximum possible error in the counts. +<2> Count of documents in categories beyond the requested size. +<3> Array of category buckets, ordered by count. +<4> Category name. +<5> Number of orders in this category. +============== + +[discrete] +[[aggregations-tutorial-daily-sales]] +==== Track daily sales patterns + +Group orders by day to track daily sales patterns using the <> aggregation. + +[source,console] +---- +GET kibana_sample_data_ecommerce/_search +{ + "size": 0, + "aggs": { + "daily_orders": { <1> + "date_histogram": { <2> + "field": "order_date", + "calendar_interval": "day", <3> + "format": "yyyy-MM-dd", <4> + "min_doc_count": 0 <5> + } + } + } +} +---- +// TEST[skip:Using Kibana sample data] +<1> Descriptive name for the time-series aggregation results. +<2> The `date_histogram` aggregration groups documents into time-based buckets, similar to terms aggregation but for dates. +<3> Uses <> to handle months with different lengths. `"day"` ensures consistent daily grouping regardless of timezone. +<4> Formats dates in response using <> (e.g. "yyyy-MM-dd"). Refer to <> for additional options. +<5> When `min_doc_count` is 0, returns buckets for days with no orders, useful for continuous time series visualization. + +.Example response +[%collapsible] +============== +[source,console-result] +---- +{ + "took": 2, + "timed_out": false, + "_shards": { + "total": 5, + "successful": 5, + "skipped": 0, + "failed": 0 + }, + "hits": { + "total": { + "value": 4675, + "relation": "eq" + }, + "max_score": null, + "hits": [] + }, + "aggregations": { + "daily_orders": { <1> + "buckets": [ <2> + { + "key_as_string": "2024-11-28", <3> + "key": 1732752000000, <4> + "doc_count": 146 <5> + }, + { + "key_as_string": "2024-11-29", + "key": 1732838400000, + "doc_count": 153 + }, + { + "key_as_string": "2024-11-30", + "key": 1732924800000, + "doc_count": 143 + }, + { + "key_as_string": "2024-12-01", + "key": 1733011200000, + "doc_count": 140 + }, + { + "key_as_string": "2024-12-02", + "key": 1733097600000, + "doc_count": 139 + }, + { + "key_as_string": "2024-12-03", + "key": 1733184000000, + "doc_count": 157 + }, + { + "key_as_string": "2024-12-04", + "key": 1733270400000, + "doc_count": 145 + }, + { + "key_as_string": "2024-12-05", + "key": 1733356800000, + "doc_count": 152 + }, + { + "key_as_string": "2024-12-06", + "key": 1733443200000, + "doc_count": 163 + }, + { + "key_as_string": "2024-12-07", + "key": 1733529600000, + "doc_count": 141 + }, + { + "key_as_string": "2024-12-08", + "key": 1733616000000, + "doc_count": 151 + }, + { + "key_as_string": "2024-12-09", + "key": 1733702400000, + "doc_count": 143 + }, + { + "key_as_string": "2024-12-10", + "key": 1733788800000, + "doc_count": 143 + }, + { + "key_as_string": "2024-12-11", + "key": 1733875200000, + "doc_count": 142 + }, + { + "key_as_string": "2024-12-12", + "key": 1733961600000, + "doc_count": 161 + }, + { + "key_as_string": "2024-12-13", + "key": 1734048000000, + "doc_count": 144 + }, + { + "key_as_string": "2024-12-14", + "key": 1734134400000, + "doc_count": 157 + }, + { + "key_as_string": "2024-12-15", + "key": 1734220800000, + "doc_count": 158 + }, + { + "key_as_string": "2024-12-16", + "key": 1734307200000, + "doc_count": 144 + }, + { + "key_as_string": "2024-12-17", + "key": 1734393600000, + "doc_count": 151 + }, + { + "key_as_string": "2024-12-18", + "key": 1734480000000, + "doc_count": 145 + }, + { + "key_as_string": "2024-12-19", + "key": 1734566400000, + "doc_count": 157 + }, + { + "key_as_string": "2024-12-20", + "key": 1734652800000, + "doc_count": 158 + }, + { + "key_as_string": "2024-12-21", + "key": 1734739200000, + "doc_count": 153 + }, + { + "key_as_string": "2024-12-22", + "key": 1734825600000, + "doc_count": 165 + }, + { + "key_as_string": "2024-12-23", + "key": 1734912000000, + "doc_count": 153 + }, + { + "key_as_string": "2024-12-24", + "key": 1734998400000, + "doc_count": 158 + }, + { + "key_as_string": "2024-12-25", + "key": 1735084800000, + "doc_count": 160 + }, + { + "key_as_string": "2024-12-26", + "key": 1735171200000, + "doc_count": 159 + }, + { + "key_as_string": "2024-12-27", + "key": 1735257600000, + "doc_count": 152 + }, + { + "key_as_string": "2024-12-28", + "key": 1735344000000, + "doc_count": 142 + } + ] + } + } +} +---- +// TEST[skip:Using Kibana sample data] +<1> Results of our named aggregation "daily_orders" +<2> Time-based buckets from date_histogram aggregation +<3> `key_as_string` is the human-readable date for this bucket +<4> `key` is the same date represented as the Unix timestamp for this bucket +<5> `doc_count` counts the number of documents that fall into this time bucket +============== + +[discrete] +[[aggregations-tutorial-combined-analysis]] +=== Combine metrics with groupings + +Now let's calculate <> within each group to get deeper insights. + +[discrete] +[[aggregations-tutorial-category-metrics]] +==== Compare category performance + +Calculate metrics within each category to compare performance across categories. + +[source,console] +---- +GET kibana_sample_data_ecommerce/_search +{ + "size": 0, + "aggs": { + "categories": { + "terms": { + "field": "category.keyword", + "size": 5, + "order": { "total_revenue": "desc" } <1> + }, + "aggs": { <2> + "total_revenue": { <3> + "sum": { + "field": "taxful_total_price" + } + }, + "avg_order_value": { <4> + "avg": { + "field": "taxful_total_price" + } + }, + "total_items": { <5> + "sum": { + "field": "total_quantity" + } + } + } + } + } +} +---- +// TEST[skip:Using Kibana sample data] +<1> Order categories by their total revenue instead of count +<2> Define metrics to calculate within each category +<3> Total revenue for the category +<4> Average order value in the category +<5> Total number of items sold + +.Example response +[%collapsible] +============== +[source,console-result] +---- +{ + "aggregations": { + "categories": { + "buckets": [ + { + "key": "Men's Clothing", <1> + "doc_count": 2179, <2> + "total_revenue": { <3> + "value": 156729.453125 + }, + "avg_order_value": { <4> + "value": 71.92726898715927 + }, + "total_items": { <5> + "value": 8716 + } + }, + { + "key": "Women's Clothing", + "doc_count": 2262, + ... + } + ] + } + } +} +---- +// TEST[skip:Using Kibana sample data] +<1> Category name +<2> Number of orders +<3> Total revenue for this category +<4> Average order value for this category +<5> Total quantity of items sold +============== + +[discrete] +[[aggregations-tutorial-daily-metrics]] +==== Analyze daily sales performance + +Let's combine metrics to track daily trends: daily revenue, unique customers, and average basket size. + +[source,console] +---- +GET kibana_sample_data_ecommerce/_search +{ + "size": 0, + "aggs": { + "daily_sales": { + "date_histogram": { + "field": "order_date", + "calendar_interval": "day", + "format": "yyyy-MM-dd" + }, + "aggs": { + "revenue": { <1> + "sum": { + "field": "taxful_total_price" + } + }, + "unique_customers": { <2> + "cardinality": { + "field": "customer_id" + } + }, + "avg_basket_size": { <3> + "avg": { + "field": "total_quantity" + } + } + } + } + } +} +---- +// TEST[skip:Using Kibana sample data] +<1> Daily revenue +<2> Uses the <> aggregation to count unique customers per day +<3> Average number of items per order + +.Example response +[%collapsible] +============== +[source,console-result] +---- +{ + "took": 119, + "timed_out": false, + "_shards": { + "total": 5, + "successful": 5, + "skipped": 0, + "failed": 0 + }, + "hits": { + "total": { + "value": 4675, + "relation": "eq" + }, + "max_score": null, + "hits": [] + }, + "aggregations": { + "daily_sales": { + "buckets": [ + { + "key_as_string": "2024-11-14", + "key": 1731542400000, + "doc_count": 146, + "unique_customers": { <1> + "value": 42 + }, + "revenue": { <2> + "value": 10578.53125 + }, + "avg_basket_size": { <3> + "value": 2.1780821917808217 + } + }, + { + "key_as_string": "2024-11-15", + "key": 1731628800000, + "doc_count": 153, + "unique_customers": { + "value": 44 + }, + "revenue": { + "value": 10448 + }, + "avg_basket_size": { + "value": 2.183006535947712 + } + }, + { + "key_as_string": "2024-11-16", + "key": 1731715200000, + "doc_count": 143, + "unique_customers": { + "value": 45 + }, + "revenue": { + "value": 10283.484375 + }, + "avg_basket_size": { + "value": 2.111888111888112 + } + }, + { + "key_as_string": "2024-11-17", + "key": 1731801600000, + "doc_count": 140, + "unique_customers": { + "value": 42 + }, + "revenue": { + "value": 10145.5234375 + }, + "avg_basket_size": { + "value": 2.142857142857143 + } + }, + { + "key_as_string": "2024-11-18", + "key": 1731888000000, + "doc_count": 139, + "unique_customers": { + "value": 42 + }, + "revenue": { + "value": 12012.609375 + }, + "avg_basket_size": { + "value": 2.158273381294964 + } + }, + { + "key_as_string": "2024-11-19", + "key": 1731974400000, + "doc_count": 157, + "unique_customers": { + "value": 43 + }, + "revenue": { + "value": 11009.45703125 + }, + "avg_basket_size": { + "value": 2.0955414012738856 + } + }, + { + "key_as_string": "2024-11-20", + "key": 1732060800000, + "doc_count": 145, + "unique_customers": { + "value": 44 + }, + "revenue": { + "value": 10720.59375 + }, + "avg_basket_size": { + "value": 2.179310344827586 + } + }, + { + "key_as_string": "2024-11-21", + "key": 1732147200000, + "doc_count": 152, + "unique_customers": { + "value": 43 + }, + "revenue": { + "value": 11185.3671875 + }, + "avg_basket_size": { + "value": 2.1710526315789473 + } + }, + { + "key_as_string": "2024-11-22", + "key": 1732233600000, + "doc_count": 163, + "unique_customers": { + "value": 44 + }, + "revenue": { + "value": 13560.140625 + }, + "avg_basket_size": { + "value": 2.2576687116564416 + } + }, + { + "key_as_string": "2024-11-23", + "key": 1732320000000, + "doc_count": 141, + "unique_customers": { + "value": 45 + }, + "revenue": { + "value": 9884.78125 + }, + "avg_basket_size": { + "value": 2.099290780141844 + } + }, + { + "key_as_string": "2024-11-24", + "key": 1732406400000, + "doc_count": 151, + "unique_customers": { + "value": 44 + }, + "revenue": { + "value": 11075.65625 + }, + "avg_basket_size": { + "value": 2.0927152317880795 + } + }, + { + "key_as_string": "2024-11-25", + "key": 1732492800000, + "doc_count": 143, + "unique_customers": { + "value": 41 + }, + "revenue": { + "value": 10323.8515625 + }, + "avg_basket_size": { + "value": 2.167832167832168 + } + }, + { + "key_as_string": "2024-11-26", + "key": 1732579200000, + "doc_count": 143, + "unique_customers": { + "value": 44 + }, + "revenue": { + "value": 10369.546875 + }, + "avg_basket_size": { + "value": 2.167832167832168 + } + }, + { + "key_as_string": "2024-11-27", + "key": 1732665600000, + "doc_count": 142, + "unique_customers": { + "value": 46 + }, + "revenue": { + "value": 11711.890625 + }, + "avg_basket_size": { + "value": 2.1971830985915495 + } + }, + { + "key_as_string": "2024-11-28", + "key": 1732752000000, + "doc_count": 161, + "unique_customers": { + "value": 43 + }, + "revenue": { + "value": 12612.6640625 + }, + "avg_basket_size": { + "value": 2.1180124223602483 + } + }, + { + "key_as_string": "2024-11-29", + "key": 1732838400000, + "doc_count": 144, + "unique_customers": { + "value": 42 + }, + "revenue": { + "value": 10176.87890625 + }, + "avg_basket_size": { + "value": 2.0347222222222223 + } + }, + { + "key_as_string": "2024-11-30", + "key": 1732924800000, + "doc_count": 157, + "unique_customers": { + "value": 43 + }, + "revenue": { + "value": 11480.33203125 + }, + "avg_basket_size": { + "value": 2.159235668789809 + } + }, + { + "key_as_string": "2024-12-01", + "key": 1733011200000, + "doc_count": 158, + "unique_customers": { + "value": 42 + }, + "revenue": { + "value": 11533.265625 + }, + "avg_basket_size": { + "value": 2.0822784810126582 + } + }, + { + "key_as_string": "2024-12-02", + "key": 1733097600000, + "doc_count": 144, + "unique_customers": { + "value": 43 + }, + "revenue": { + "value": 10499.8125 + }, + "avg_basket_size": { + "value": 2.201388888888889 + } + }, + { + "key_as_string": "2024-12-03", + "key": 1733184000000, + "doc_count": 151, + "unique_customers": { + "value": 40 + }, + "revenue": { + "value": 12111.6875 + }, + "avg_basket_size": { + "value": 2.172185430463576 + } + }, + { + "key_as_string": "2024-12-04", + "key": 1733270400000, + "doc_count": 145, + "unique_customers": { + "value": 40 + }, + "revenue": { + "value": 10530.765625 + }, + "avg_basket_size": { + "value": 2.0965517241379312 + } + }, + { + "key_as_string": "2024-12-05", + "key": 1733356800000, + "doc_count": 157, + "unique_customers": { + "value": 43 + }, + "revenue": { + "value": 11872.5625 + }, + "avg_basket_size": { + "value": 2.1464968152866244 + } + }, + { + "key_as_string": "2024-12-06", + "key": 1733443200000, + "doc_count": 158, + "unique_customers": { + "value": 42 + }, + "revenue": { + "value": 12109.453125 + }, + "avg_basket_size": { + "value": 2.151898734177215 + } + }, + { + "key_as_string": "2024-12-07", + "key": 1733529600000, + "doc_count": 153, + "unique_customers": { + "value": 42 + }, + "revenue": { + "value": 11057.40625 + }, + "avg_basket_size": { + "value": 2.111111111111111 + } + }, + { + "key_as_string": "2024-12-08", + "key": 1733616000000, + "doc_count": 165, + "unique_customers": { + "value": 42 + }, + "revenue": { + "value": 13095.609375 + }, + "avg_basket_size": { + "value": 2.1818181818181817 + } + }, + { + "key_as_string": "2024-12-09", + "key": 1733702400000, + "doc_count": 153, + "unique_customers": { + "value": 41 + }, + "revenue": { + "value": 12574.015625 + }, + "avg_basket_size": { + "value": 2.2287581699346406 + } + }, + { + "key_as_string": "2024-12-10", + "key": 1733788800000, + "doc_count": 158, + "unique_customers": { + "value": 42 + }, + "revenue": { + "value": 11188.1875 + }, + "avg_basket_size": { + "value": 2.151898734177215 + } + }, + { + "key_as_string": "2024-12-11", + "key": 1733875200000, + "doc_count": 160, + "unique_customers": { + "value": 42 + }, + "revenue": { + "value": 12117.65625 + }, + "avg_basket_size": { + "value": 2.20625 + } + }, + { + "key_as_string": "2024-12-12", + "key": 1733961600000, + "doc_count": 159, + "unique_customers": { + "value": 45 + }, + "revenue": { + "value": 11558.25 + }, + "avg_basket_size": { + "value": 2.1823899371069184 + } + }, + { + "key_as_string": "2024-12-13", + "key": 1734048000000, + "doc_count": 152, + "unique_customers": { + "value": 45 + }, + "revenue": { + "value": 11921.1171875 + }, + "avg_basket_size": { + "value": 2.289473684210526 + } + }, + { + "key_as_string": "2024-12-14", + "key": 1734134400000, + "doc_count": 142, + "unique_customers": { + "value": 45 + }, + "revenue": { + "value": 11135.03125 + }, + "avg_basket_size": { + "value": 2.183098591549296 + } + } + ] + } + } +} +---- +// TEST[skip:Using Kibana sample data] +============== + +[discrete] +[[aggregations-tutorial-trends]] +=== Track trends and patterns + +You can use <> on the results of other aggregations. +Let's analyze how metrics change over time. + +[discrete] +[[aggregations-tutorial-moving-average]] +==== Smooth out daily fluctuations + +Moving averages help identify trends by reducing day-to-day noise in the data. +Let's observe sales trends more clearly by smoothing daily revenue variations, using the <> aggregation. + +[source,console] +---- +GET kibana_sample_data_ecommerce/_search +{ + "size": 0, + "aggs": { + "daily_sales": { + "date_histogram": { + "field": "order_date", + "calendar_interval": "day" + }, + "aggs": { + "daily_revenue": { <1> + "sum": { + "field": "taxful_total_price" + } + }, + "smoothed_revenue": { <2> + "moving_fn": { <3> + "buckets_path": "daily_revenue", <4> + "window": 3, <5> + "script": "MovingFunctions.unweightedAvg(values)" <6> + } + } + } + } + } +} +---- +// TEST[skip:Using Kibana sample data] +<1> Calculate daily revenue first. +<2> Create a smoothed version of the daily revenue. +<3> Use `moving_fn` for moving window calculations. +<4> Reference the revenue from our date histogram. +<5> Use a 3-day window — use different window sizes to see trends at different time scales. +<6> Use the built-in unweighted average function in the `moving_fn` aggregation. + +.Example response +[%collapsible] +============== +[source,console-result] +---- +{ + "took": 13, + "timed_out": false, + "_shards": { + "total": 5, + "successful": 5, + "skipped": 0, + "failed": 0 + }, + "hits": { + "total": { + "value": 4675, + "relation": "eq" + }, + "max_score": null, + "hits": [] + }, + "aggregations": { + "daily_sales": { + "buckets": [ + { + "key_as_string": "2024-11-14T00:00:00.000Z", <1> + "key": 1731542400000, + "doc_count": 146, <2> + "daily_revenue": { <3> + "value": 10578.53125 + }, + "smoothed_revenue": { <4> + "value": null + } + }, + { + "key_as_string": "2024-11-15T00:00:00.000Z", + "key": 1731628800000, + "doc_count": 153, + "daily_revenue": { + "value": 10448 + }, + "smoothed_revenue": { <5> + "value": 10578.53125 + } + }, + { + "key_as_string": "2024-11-16T00:00:00.000Z", + "key": 1731715200000, + "doc_count": 143, + "daily_revenue": { + "value": 10283.484375 + }, + "smoothed_revenue": { + "value": 10513.265625 + } + }, + { + "key_as_string": "2024-11-17T00:00:00.000Z", + "key": 1731801600000, + "doc_count": 140, + "daily_revenue": { + "value": 10145.5234375 + }, + "smoothed_revenue": { + "value": 10436.671875 + } + }, + { + "key_as_string": "2024-11-18T00:00:00.000Z", + "key": 1731888000000, + "doc_count": 139, + "daily_revenue": { + "value": 12012.609375 + }, + "smoothed_revenue": { + "value": 10292.3359375 + } + }, + { + "key_as_string": "2024-11-19T00:00:00.000Z", + "key": 1731974400000, + "doc_count": 157, + "daily_revenue": { + "value": 11009.45703125 + }, + "smoothed_revenue": { + "value": 10813.872395833334 + } + }, + { + "key_as_string": "2024-11-20T00:00:00.000Z", + "key": 1732060800000, + "doc_count": 145, + "daily_revenue": { + "value": 10720.59375 + }, + "smoothed_revenue": { + "value": 11055.86328125 + } + }, + { + "key_as_string": "2024-11-21T00:00:00.000Z", + "key": 1732147200000, + "doc_count": 152, + "daily_revenue": { + "value": 11185.3671875 + }, + "smoothed_revenue": { + "value": 11247.553385416666 + } + }, + { + "key_as_string": "2024-11-22T00:00:00.000Z", + "key": 1732233600000, + "doc_count": 163, + "daily_revenue": { + "value": 13560.140625 + }, + "smoothed_revenue": { + "value": 10971.805989583334 + } + }, + { + "key_as_string": "2024-11-23T00:00:00.000Z", + "key": 1732320000000, + "doc_count": 141, + "daily_revenue": { + "value": 9884.78125 + }, + "smoothed_revenue": { + "value": 11822.033854166666 + } + }, + { + "key_as_string": "2024-11-24T00:00:00.000Z", + "key": 1732406400000, + "doc_count": 151, + "daily_revenue": { + "value": 11075.65625 + }, + "smoothed_revenue": { + "value": 11543.4296875 + } + }, + { + "key_as_string": "2024-11-25T00:00:00.000Z", + "key": 1732492800000, + "doc_count": 143, + "daily_revenue": { + "value": 10323.8515625 + }, + "smoothed_revenue": { + "value": 11506.859375 + } + }, + { + "key_as_string": "2024-11-26T00:00:00.000Z", + "key": 1732579200000, + "doc_count": 143, + "daily_revenue": { + "value": 10369.546875 + }, + "smoothed_revenue": { + "value": 10428.096354166666 + } + }, + { + "key_as_string": "2024-11-27T00:00:00.000Z", + "key": 1732665600000, + "doc_count": 142, + "daily_revenue": { + "value": 11711.890625 + }, + "smoothed_revenue": { + "value": 10589.684895833334 + } + }, + { + "key_as_string": "2024-11-28T00:00:00.000Z", + "key": 1732752000000, + "doc_count": 161, + "daily_revenue": { + "value": 12612.6640625 + }, + "smoothed_revenue": { + "value": 10801.763020833334 + } + }, + { + "key_as_string": "2024-11-29T00:00:00.000Z", + "key": 1732838400000, + "doc_count": 144, + "daily_revenue": { + "value": 10176.87890625 + }, + "smoothed_revenue": { + "value": 11564.700520833334 + } + }, + { + "key_as_string": "2024-11-30T00:00:00.000Z", + "key": 1732924800000, + "doc_count": 157, + "daily_revenue": { + "value": 11480.33203125 + }, + "smoothed_revenue": { + "value": 11500.477864583334 + } + }, + { + "key_as_string": "2024-12-01T00:00:00.000Z", + "key": 1733011200000, + "doc_count": 158, + "daily_revenue": { + "value": 11533.265625 + }, + "smoothed_revenue": { + "value": 11423.291666666666 + } + }, + { + "key_as_string": "2024-12-02T00:00:00.000Z", + "key": 1733097600000, + "doc_count": 144, + "daily_revenue": { + "value": 10499.8125 + }, + "smoothed_revenue": { + "value": 11063.4921875 + } + }, + { + "key_as_string": "2024-12-03T00:00:00.000Z", + "key": 1733184000000, + "doc_count": 151, + "daily_revenue": { + "value": 12111.6875 + }, + "smoothed_revenue": { + "value": 11171.13671875 + } + }, + { + "key_as_string": "2024-12-04T00:00:00.000Z", + "key": 1733270400000, + "doc_count": 145, + "daily_revenue": { + "value": 10530.765625 + }, + "smoothed_revenue": { + "value": 11381.588541666666 + } + }, + { + "key_as_string": "2024-12-05T00:00:00.000Z", + "key": 1733356800000, + "doc_count": 157, + "daily_revenue": { + "value": 11872.5625 + }, + "smoothed_revenue": { + "value": 11047.421875 + } + }, + { + "key_as_string": "2024-12-06T00:00:00.000Z", + "key": 1733443200000, + "doc_count": 158, + "daily_revenue": { + "value": 12109.453125 + }, + "smoothed_revenue": { + "value": 11505.005208333334 + } + }, + { + "key_as_string": "2024-12-07T00:00:00.000Z", + "key": 1733529600000, + "doc_count": 153, + "daily_revenue": { + "value": 11057.40625 + }, + "smoothed_revenue": { + "value": 11504.260416666666 + } + }, + { + "key_as_string": "2024-12-08T00:00:00.000Z", + "key": 1733616000000, + "doc_count": 165, + "daily_revenue": { + "value": 13095.609375 + }, + "smoothed_revenue": { + "value": 11679.807291666666 + } + }, + { + "key_as_string": "2024-12-09T00:00:00.000Z", + "key": 1733702400000, + "doc_count": 153, + "daily_revenue": { + "value": 12574.015625 + }, + "smoothed_revenue": { + "value": 12087.489583333334 + } + }, + { + "key_as_string": "2024-12-10T00:00:00.000Z", + "key": 1733788800000, + "doc_count": 158, + "daily_revenue": { + "value": 11188.1875 + }, + "smoothed_revenue": { + "value": 12242.34375 + } + }, + { + "key_as_string": "2024-12-11T00:00:00.000Z", + "key": 1733875200000, + "doc_count": 160, + "daily_revenue": { + "value": 12117.65625 + }, + "smoothed_revenue": { + "value": 12285.9375 + } + }, + { + "key_as_string": "2024-12-12T00:00:00.000Z", + "key": 1733961600000, + "doc_count": 159, + "daily_revenue": { + "value": 11558.25 + }, + "smoothed_revenue": { + "value": 11959.953125 + } + }, + { + "key_as_string": "2024-12-13T00:00:00.000Z", + "key": 1734048000000, + "doc_count": 152, + "daily_revenue": { + "value": 11921.1171875 + }, + "smoothed_revenue": { + "value": 11621.364583333334 + } + }, + { + "key_as_string": "2024-12-14T00:00:00.000Z", + "key": 1734134400000, + "doc_count": 142, + "daily_revenue": { + "value": 11135.03125 + }, + "smoothed_revenue": { + "value": 11865.674479166666 + } + } + ] + } + } +} +---- +// TEST[skip:Using Kibana sample data] +<1> Date of the bucket is in default ISO format because we didn't specify a format +<2> Number of orders for this day +<3> Raw daily revenue before smoothing +<4> First day has no smoothed value as it needs previous days for the calculation +<5> Moving average starts from second day, using a 3-day window +============== + +[TIP] +==== +Notice how the smoothed values lag behind the actual values - this is because they need previous days' data to calculate. The first day will always be null when using moving averages. +==== + +[discrete] +[[aggregations-tutorial-cumulative]] +==== Track running totals + +Track running totals over time using the <> aggregation. + +[source,console] +---- +GET kibana_sample_data_ecommerce/_search +{ + "size": 0, + "aggs": { + "daily_sales": { + "date_histogram": { + "field": "order_date", + "calendar_interval": "day" + }, + "aggs": { + "revenue": { + "sum": { + "field": "taxful_total_price" + } + }, + "cumulative_revenue": { <1> + "cumulative_sum": { <2> + "buckets_path": "revenue" <3> + } + } + } + } + } +} +---- +// TEST[skip:Using Kibana sample data] +<1> Name for our running total +<2> `cumulative_sum` adds up values across buckets +<3> Reference the revenue we want to accumulate + +.Example response +[%collapsible] +============== +[source,console-result] +---- +{ + "took": 4, + "timed_out": false, + "_shards": { + "total": 5, + "successful": 5, + "skipped": 0, + "failed": 0 + }, + "hits": { + "total": { + "value": 4675, + "relation": "eq" + }, + "max_score": null, + "hits": [] + }, + "aggregations": { + "daily_sales": { <1> + "buckets": [ <2> + { + "key_as_string": "2024-11-14T00:00:00.000Z", <3> + "key": 1731542400000, + "doc_count": 146, + "revenue": { <4> + "value": 10578.53125 + }, + "cumulative_revenue": { <5> + "value": 10578.53125 + } + }, + { + "key_as_string": "2024-11-15T00:00:00.000Z", + "key": 1731628800000, + "doc_count": 153, + "revenue": { + "value": 10448 + }, + "cumulative_revenue": { + "value": 21026.53125 + } + }, + { + "key_as_string": "2024-11-16T00:00:00.000Z", + "key": 1731715200000, + "doc_count": 143, + "revenue": { + "value": 10283.484375 + }, + "cumulative_revenue": { + "value": 31310.015625 + } + }, + { + "key_as_string": "2024-11-17T00:00:00.000Z", + "key": 1731801600000, + "doc_count": 140, + "revenue": { + "value": 10145.5234375 + }, + "cumulative_revenue": { + "value": 41455.5390625 + } + }, + { + "key_as_string": "2024-11-18T00:00:00.000Z", + "key": 1731888000000, + "doc_count": 139, + "revenue": { + "value": 12012.609375 + }, + "cumulative_revenue": { + "value": 53468.1484375 + } + }, + { + "key_as_string": "2024-11-19T00:00:00.000Z", + "key": 1731974400000, + "doc_count": 157, + "revenue": { + "value": 11009.45703125 + }, + "cumulative_revenue": { + "value": 64477.60546875 + } + }, + { + "key_as_string": "2024-11-20T00:00:00.000Z", + "key": 1732060800000, + "doc_count": 145, + "revenue": { + "value": 10720.59375 + }, + "cumulative_revenue": { + "value": 75198.19921875 + } + }, + { + "key_as_string": "2024-11-21T00:00:00.000Z", + "key": 1732147200000, + "doc_count": 152, + "revenue": { + "value": 11185.3671875 + }, + "cumulative_revenue": { + "value": 86383.56640625 + } + }, + { + "key_as_string": "2024-11-22T00:00:00.000Z", + "key": 1732233600000, + "doc_count": 163, + "revenue": { + "value": 13560.140625 + }, + "cumulative_revenue": { + "value": 99943.70703125 + } + }, + { + "key_as_string": "2024-11-23T00:00:00.000Z", + "key": 1732320000000, + "doc_count": 141, + "revenue": { + "value": 9884.78125 + }, + "cumulative_revenue": { + "value": 109828.48828125 + } + }, + { + "key_as_string": "2024-11-24T00:00:00.000Z", + "key": 1732406400000, + "doc_count": 151, + "revenue": { + "value": 11075.65625 + }, + "cumulative_revenue": { + "value": 120904.14453125 + } + }, + { + "key_as_string": "2024-11-25T00:00:00.000Z", + "key": 1732492800000, + "doc_count": 143, + "revenue": { + "value": 10323.8515625 + }, + "cumulative_revenue": { + "value": 131227.99609375 + } + }, + { + "key_as_string": "2024-11-26T00:00:00.000Z", + "key": 1732579200000, + "doc_count": 143, + "revenue": { + "value": 10369.546875 + }, + "cumulative_revenue": { + "value": 141597.54296875 + } + }, + { + "key_as_string": "2024-11-27T00:00:00.000Z", + "key": 1732665600000, + "doc_count": 142, + "revenue": { + "value": 11711.890625 + }, + "cumulative_revenue": { + "value": 153309.43359375 + } + }, + { + "key_as_string": "2024-11-28T00:00:00.000Z", + "key": 1732752000000, + "doc_count": 161, + "revenue": { + "value": 12612.6640625 + }, + "cumulative_revenue": { + "value": 165922.09765625 + } + }, + { + "key_as_string": "2024-11-29T00:00:00.000Z", + "key": 1732838400000, + "doc_count": 144, + "revenue": { + "value": 10176.87890625 + }, + "cumulative_revenue": { + "value": 176098.9765625 + } + }, + { + "key_as_string": "2024-11-30T00:00:00.000Z", + "key": 1732924800000, + "doc_count": 157, + "revenue": { + "value": 11480.33203125 + }, + "cumulative_revenue": { + "value": 187579.30859375 + } + }, + { + "key_as_string": "2024-12-01T00:00:00.000Z", + "key": 1733011200000, + "doc_count": 158, + "revenue": { + "value": 11533.265625 + }, + "cumulative_revenue": { + "value": 199112.57421875 + } + }, + { + "key_as_string": "2024-12-02T00:00:00.000Z", + "key": 1733097600000, + "doc_count": 144, + "revenue": { + "value": 10499.8125 + }, + "cumulative_revenue": { + "value": 209612.38671875 + } + }, + { + "key_as_string": "2024-12-03T00:00:00.000Z", + "key": 1733184000000, + "doc_count": 151, + "revenue": { + "value": 12111.6875 + }, + "cumulative_revenue": { + "value": 221724.07421875 + } + }, + { + "key_as_string": "2024-12-04T00:00:00.000Z", + "key": 1733270400000, + "doc_count": 145, + "revenue": { + "value": 10530.765625 + }, + "cumulative_revenue": { + "value": 232254.83984375 + } + }, + { + "key_as_string": "2024-12-05T00:00:00.000Z", + "key": 1733356800000, + "doc_count": 157, + "revenue": { + "value": 11872.5625 + }, + "cumulative_revenue": { + "value": 244127.40234375 + } + }, + { + "key_as_string": "2024-12-06T00:00:00.000Z", + "key": 1733443200000, + "doc_count": 158, + "revenue": { + "value": 12109.453125 + }, + "cumulative_revenue": { + "value": 256236.85546875 + } + }, + { + "key_as_string": "2024-12-07T00:00:00.000Z", + "key": 1733529600000, + "doc_count": 153, + "revenue": { + "value": 11057.40625 + }, + "cumulative_revenue": { + "value": 267294.26171875 + } + }, + { + "key_as_string": "2024-12-08T00:00:00.000Z", + "key": 1733616000000, + "doc_count": 165, + "revenue": { + "value": 13095.609375 + }, + "cumulative_revenue": { + "value": 280389.87109375 + } + }, + { + "key_as_string": "2024-12-09T00:00:00.000Z", + "key": 1733702400000, + "doc_count": 153, + "revenue": { + "value": 12574.015625 + }, + "cumulative_revenue": { + "value": 292963.88671875 + } + }, + { + "key_as_string": "2024-12-10T00:00:00.000Z", + "key": 1733788800000, + "doc_count": 158, + "revenue": { + "value": 11188.1875 + }, + "cumulative_revenue": { + "value": 304152.07421875 + } + }, + { + "key_as_string": "2024-12-11T00:00:00.000Z", + "key": 1733875200000, + "doc_count": 160, + "revenue": { + "value": 12117.65625 + }, + "cumulative_revenue": { + "value": 316269.73046875 + } + }, + { + "key_as_string": "2024-12-12T00:00:00.000Z", + "key": 1733961600000, + "doc_count": 159, + "revenue": { + "value": 11558.25 + }, + "cumulative_revenue": { + "value": 327827.98046875 + } + }, + { + "key_as_string": "2024-12-13T00:00:00.000Z", + "key": 1734048000000, + "doc_count": 152, + "revenue": { + "value": 11921.1171875 + }, + "cumulative_revenue": { + "value": 339749.09765625 + } + }, + { + "key_as_string": "2024-12-14T00:00:00.000Z", + "key": 1734134400000, + "doc_count": 142, + "revenue": { + "value": 11135.03125 + }, + "cumulative_revenue": { + "value": 350884.12890625 + } + } + ] + } + } +} +---- +// TEST[skip:Using Kibana sample data] +<1> `daily_sales`: Results from our daily sales date histogram +<2> `buckets`: Array of time-based buckets +<3> `key_as_string`: Date for this bucket (in ISO format since no format specified) +<4> `revenue`: Daily revenue for this date +<5> `cumulative_revenue`: Running total of revenue up to this date +============== + +[discrete] +[[aggregations-tutorial-next-steps]] +=== Next steps + +Refer to the <> for more details on all available aggregation types. \ No newline at end of file diff --git a/docs/reference/quickstart/index.asciidoc b/docs/reference/quickstart/index.asciidoc index 31ba67e1b7a60..330582956c457 100644 --- a/docs/reference/quickstart/index.asciidoc +++ b/docs/reference/quickstart/index.asciidoc @@ -26,6 +26,7 @@ Alternatively, refer to our <>. Learn about indices, documents, and mappings, and perform a basic search using the Query DSL. * <>. Learn about different options for querying data, including full-text search and filtering, using the Query DSL. * <>: Learn how to query and aggregate your data using {esql}. +* <>. Learn how to analyze data using different types of aggregations, including metrics, buckets, and pipelines. * <>: Learn how to create embeddings for your data with `semantic_text` and query using the `semantic` query. ** <>: Learn how to combine semantic search with full-text search. * <>: Learn how to ingest dense vector embeddings into {es}. @@ -41,3 +42,4 @@ If you're interested in using {es} with Python, check out Elastic Search Labs: include::getting-started.asciidoc[] include::full-text-filtering-tutorial.asciidoc[] +include::aggs-tutorial.asciidoc[] diff --git a/server/src/main/java/org/elasticsearch/index/mapper/vectors/SparseVectorFieldMapper.java b/server/src/main/java/org/elasticsearch/index/mapper/vectors/SparseVectorFieldMapper.java index d0a8dfae4f242..19ae649c12a83 100644 --- a/server/src/main/java/org/elasticsearch/index/mapper/vectors/SparseVectorFieldMapper.java +++ b/server/src/main/java/org/elasticsearch/index/mapper/vectors/SparseVectorFieldMapper.java @@ -171,6 +171,7 @@ public void parse(DocumentParserContext context) throws IOException { ); } + final boolean isWithinLeaf = context.path().isWithinLeafObject(); String feature = null; try { // make sure that we don't expand dots in field names while parsing @@ -205,7 +206,7 @@ public void parse(DocumentParserContext context) throws IOException { context.addToFieldNames(fieldType().name()); } } finally { - context.path().setWithinLeafObject(false); + context.path().setWithinLeafObject(isWithinLeaf); } }