Skip to content

Latest commit

 

History

History
343 lines (255 loc) · 10.3 KB

README.md

File metadata and controls

343 lines (255 loc) · 10.3 KB

Benchmarks Changelog Crates.io Examples FAQ Gitter License Roadmap

iceoryx2 - Zero-Copy Lock-Free IPC Purely Written In Rust

  1. Introduction
  2. Performance
  3. Getting Started
    1. Publish Subscribe
    2. Events
    3. Custom Configuration
  4. Supported Platforms
  5. Language Bindings
  6. Commercial Support
  7. Thanks To All Contributors

Introduction

Welcome to Iceoryx2, the efficient, and ultra-low latency inter-process communication middleware. This library is designed to provide you with fast and reliable zero-copy and lock-free inter-process communication mechanisms.

Iceoryx2 is all about providing a seamless experience for inter-process communication, featuring versatile messaging patterns. Whether you're diving into publish-subscribe, events, or the promise of upcoming features like request-response, pipelines, and blackboard, Iceoryx2 has you covered.

One of the features of Iceoryx2 is its consistently low transmission latency regardless of payload size, ensuring a predictable and reliable communication experience.

Iceoryx2's origins can be traced back to iceoryx. By overcoming past technical debts and refining the architecture, Iceoryx2 enables the modularity we've always desired.

In the near future, Iceoryx2 is poised to support at least the same feature set and platforms as iceoryx, ensuring a seamless transition and offering enhanced capabilities for your inter-process communication needs. So, if you're looking for lightning-fast, cross-platform communication that doesn't compromise on performance or modularity, Iceoryx2 is your answer.

Performance

Comparision Of Mechanisms

benchmark of different mechanism

Benchmark-System

  • CPU: AMD Ryzen 7 7840S with Radeon 780M Graphics
  • OS: Linux 6.8.5-arch1-1 #1 SMP PREEMPT_DYNAMIC GNU/Linux
  • Compiler:
    • rustc 1.77.1
    • gcc 13.2.1 20230801

Comparision Of Architectures

benchmark on different systems

Getting Started

Publish Subscribe

This minimal example showcases a publisher sending the number 1234 every second, while a subscriber efficiently receives and prints the data.

publisher.rs

use core::time::Duration;
use iceoryx2::prelude::*;

const CYCLE_TIME: Duration = Duration::from_secs(1);

fn main() -> Result<(), Box<dyn std::error::Error>> {
    let service_name = ServiceName::new("My/Funk/ServiceName")?;

    let service = zero_copy::Service::new(&service_name)
        .publish_subscribe()
        .typed::<usize>()
        .open_or_create()?;

    let publisher = service.publisher().create()?;

    while let Iox2Event::Tick = Iox2::wait(CYCLE_TIME) {
        let sample = publisher.loan_uninit()?;
        let sample = sample.write_payload(1234);
        sample.send()?;
    }

    Ok(())
}

subscriber.rs

use core::time::Duration;
use iceoryx2::prelude::*;

const CYCLE_TIME: Duration = Duration::from_secs(1);

fn main() -> Result<(), Box<dyn std::error::Error>> {
    let service_name = ServiceName::new("My/Funk/ServiceName")?;

    let service = zero_copy::Service::new(&service_name)
        .publish_subscribe()
        .typed::<usize>()
        .open_or_create()?;

    let subscriber = service.subscriber().create()?;

    while let Iox2Event::Tick = Iox2::wait(CYCLE_TIME) {
        while let Some(sample) = subscriber.receive()? {
            println!("received: {:?}", *sample);
        }
    }

    Ok(())
}

This example is a simplified version of the publish-subscribe example. You can execute it by opening two terminals and calling:

Terminal 1:

cargo run --example publish_subscribe_publisher

Terminal 2:

cargo run --example publish_subscribe_subscriber

Events

This minimal example showcases an event notification between two processes.

notifier.rs

use core::time::Duration;
use iceoryx2::prelude::*;

const CYCLE_TIME: Duration = Duration::from_secs(1);

fn main() -> Result<(), Box<dyn std::error::Error>> {
    let event_name = ServiceName::new("MyEventName")?;

    let event = zero_copy::Service::new(&event_name)
        .event()
        .open_or_create()?;

    let notifier = event.notifier().create()?;

    let id = EventId::new(12);
    while let Iox2Event::Tick = Iox2::wait(CYCLE_TIME) {
        notifier.notify_with_custom_event_id(id)?;

        println!("Trigger event with id {:?} ...", id);
    }

    Ok(())
}

listener.rs

use core::time::Duration;
use iceoryx2::prelude::*;

const CYCLE_TIME: Duration = Duration::from_secs(1);

fn main() -> Result<(), Box<dyn std::error::Error>> {
    let event_name = ServiceName::new("MyEventName")?;

    let event = zero_copy::Service::new(&event_name)
        .event()
        .open_or_create()?;

    let listener = event.listener().create()?;

    while let Iox2Event::Tick = Iox2::wait(Duration::ZERO) {
        if let Ok(Some(event_id)) = listener.timed_wait_one(CYCLE_TIME) {
            println!("event was triggered with id: {:?}", event_id);
        }
    }

    Ok(())
}

listener.rs grabbing all events at once

use core::time::Duration;
use iceoryx2::prelude::*;

const CYCLE_TIME: Duration = Duration::from_secs(1);

fn main() -> Result<(), Box<dyn std::error::Error>> {
    let event_name = ServiceName::new("MyEventName")?;

    let event = zero_copy::Service::new(&event_name)
        .event()
        .open_or_create()?;

    let listener = event.listener().create()?;

    while let Iox2Event::Tick = Iox2::wait(Duration::ZERO) {
        listener.timed_wait_all(
            |event_id| {
                println!("event was triggered with id: {:?}", event_id);
            },
            CYCLE_TIME,
        )?;
    }

    Ok(())
}

This example is a simplified version of the event example. You can execute it by opening two terminals and calling:

Terminal 1:

cargo run --example event_notifier

Terminal 2:

cargo run --example event_listener

Custom Configuration

It is possible to configure default quality of service settings, paths and file suffixes in a custom configuration file. For more details visit the configuration directory.

Supported Platforms

The support levels can be adjusted when required.

Operating System State Current Support Level Target Support Level
Android planned - tier 1
FreeBSD done tier 2 tier 1
FreeRTOS planned - tier 2
iOS planned - tier 2
Linux (x86_64) done tier 2 tier 1
Linux (aarch64) done tier 2 tier 1
Linux (32-bit) in-progress tier 3 tier 1
Mac OS done tier 2 tier 2
QNX planned - tier 1
WatchOS planned - tier 2
Windows done tier 2 tier 2
  • tier 1 - All safety and security features are working.
  • tier 2 - Works with a restricted security and safety feature set.
  • tier 3 - Work in progress. Might compile and run or not.

Language Bindings

Language State
C / C++ planned
Lua planned
Python planned
Zig planned

Commercial Support

ekxide IO GmbH
[email protected]
  • commercial extensions and tooling
  • custom feature development
  • training and consulting
  • integration support
  • engineering services around the iceoryx ecosystem

Thanks To All Contributors

Christian »elfenpiff« Eltzschig
Christian »elfenpiff« Eltzschig
Mathias »elBoberido« Kraus
Mathias »elBoberido« Kraus