diff --git a/.gitlab-ci.yml b/.gitlab-ci.yml index 66f794e0..1a0ffb5b 100644 --- a/.gitlab-ci.yml +++ b/.gitlab-ci.yml @@ -128,6 +128,7 @@ get_data: - runner_system_failure include: + - local: 'benchmarks/backgrounds/config.yml' - local: 'benchmarks/tracking_detectors/config.yml' - local: 'benchmarks/barrel_ecal/config.yml' - local: 'benchmarks/barrel_hcal/config.yml' diff --git a/Snakefile b/Snakefile index 3bd2c69c..6e4bc637 100644 --- a/Snakefile +++ b/Snakefile @@ -1 +1,30 @@ +configfile: "config.yaml" + +if config["remote"] == "S3": + from snakemake.remote.S3 import RemoteProvider as S3RemoteProvider + provider = S3RemoteProvider( + endpoint_url="https://eics3.sdcc.bnl.gov:9000", + access_key_id=os.environ["S3_ACCESS_KEY"], + secret_access_key=os.environ["S3_SECRET_KEY"], + ) + remote_path = lambda path: f"eictest/{path}" +elif config["remote"] == "XRootD": + from snakemake.remote.XRootD import RemoteProvider as XRootDRemoteProvider + provider = XRootDRemoteProvider( + stay_on_remote=False, + ) + remote_path = lambda path: f"root://dtn-eic.jlab.org//work/eic2/{path}" +else: + raise ValueError(f"Unexpected config[\"remote\"] = {config['remote']}") + +include: "benchmarks/backgrounds/Snakefile" include: "benchmarks/barrel_ecal/Snakefile" + +rule matplotlibrc: + output: + ".matplotlibrc", + run: + with open(output[0], "wt") as fp: + fp.write("backend: Agg\n") + # interactive mode prevents plt.show() from blocking + fp.write("interactive : True\n") diff --git a/benchmarks/backgrounds/Snakefile b/benchmarks/backgrounds/Snakefile new file mode 100644 index 00000000..3e3b1c66 --- /dev/null +++ b/benchmarks/backgrounds/Snakefile @@ -0,0 +1,101 @@ +import os +import shutil + + +rule backgrounds_get_beam_gas_electron: + input: + provider.remote(remote_path("EPIC/EVGEN/BACKGROUNDS/BEAMGAS/electron/beam_gas_ep_10GeV_foam_emin10keV_10Mevt_vtx.hepmc")), + output: + "input/backgrounds/beam_gas_electron.hepmc", + run: + shutil.move(input[0], output[0]) + + +rule backgrounds_get_beam_gas_proton: + input: + provider.remote(remote_path("EPIC/EVGEN/BACKGROUNDS/BEAMGAS/proton/ProtonBeamGasEvents/100GeV/100GeV_1.hepmc")), + output: + "input/backgrounds/beam_gas_proton.hepmc", + run: + shutil.move(input[0], output[0]) + + +rule backgrounds_get_DIS: + input: + provider.remote(remote_path("EPIC/EVGEN/DIS/NC/{BEAM}/minQ2={MINQ2}/pythia8NCDIS_{BEAM}_minQ2={MINQ2}_{SUFFIX}.hepmc")), + wildcard_constraints: + BEAM="\d+x\d+", + MINQ2="\d+", + output: + "input/backgrounds/pythia8NCDIS_{BEAM}_minQ2={MINQ2}_{SUFFIX}.hepmc", + run: + shutil.move(input[0], output[0]) + + +rule backgrounds_sim: + input: + "input/backgrounds/{NAME}.hepmc", + output: + "sim_output/{DETECTOR_CONFIG}/{NAME}.edm4hep.root", + log: + "sim_output/{DETECTOR_CONFIG}/{NAME}.edm4hep.root.log", + params: + N_EVENTS=100 + shell: + """ +ddsim \ + --runType batch \ + --part.minimalKineticEnergy 100*GeV \ + --filter.tracker edep0 \ + -v WARNING \ + --numberOfEvents {params.N_EVENTS} \ + --compactFile $DETECTOR_PATH/{wildcards.DETECTOR_CONFIG}.xml \ + --inputFiles {input} \ + --outputFile {output} +""" + + +rule backgrounds_org2py: + input: + notebook=workflow.source_path("ecal_backwards.org"), + converter=workflow.source_path("./org2py.awk"), + output: + "ecal_backwards.py" + shell: + """ +awk -f {input.converter} {input.notebook} > {output} +""" + +DETECTOR_CONFIG=os.environ["DETECTOR_CONFIG"] + +rule backgrounds_ecal_backwards: + input: + matplotlibrc=".matplotlibrc", + script="ecal_backwards.py", + electron_beam_gas_gen="input/backgrounds/beam_gas_electron.hepmc", + electron_beam_gas_sim="sim_output/" + DETECTOR_CONFIG + "/beam_gas_electron.edm4hep.root", + physics_signal_sim="sim_output/" + DETECTOR_CONFIG + "/pythia8NCDIS_10x100_minQ2=1_beamEffects_xAngle=-0.025_hiDiv_1.edm4hep.root", + proton_beam_gas_gen="input/backgrounds/beam_gas_proton.hepmc", + proton_beam_gas_sim="sim_output/" + DETECTOR_CONFIG + "/beam_gas_proton.edm4hep.root", + output: + directory("results/backgrounds/backwards_ecal") + threads: workflow.cores + shell: + """ +PORT=$RANDOM +dask scheduler --port $PORT & +export DASK_SCHEDULER=localhost:$PORT +SCHEDULER_PID=$! +dask worker tcp://$DASK_SCHEDULER --nworkers {threads} --nthreads 1 & +WORKER_PID=$! +env \ +MATPLOTLIBRC={input.matplotlibrc} \ +ELECTRON_BEAM_GAS_GEN=$(realpath {input.electron_beam_gas_gen}) \ +ELECTRON_BEAM_GAS_SIM=$(realpath {input.electron_beam_gas_sim}) \ +PHYSICS_PROCESS_SIM=$(realpath {input.physics_signal_sim}) \ +PROTON_BEAM_GAS_GEN=$(realpath {input.proton_beam_gas_gen}) \ +PROTON_BEAM_GAS_SIM=$(realpath {input.proton_beam_gas_sim}) \ +OUTPUT_DIR={output} \ +python {input.script} +kill $WORKER_PID $SCHEDULER_PID +""" diff --git a/benchmarks/backgrounds/config.yml b/benchmarks/backgrounds/config.yml new file mode 100644 index 00000000..84bbc7e0 --- /dev/null +++ b/benchmarks/backgrounds/config.yml @@ -0,0 +1,26 @@ +sim:backgrounds: + extends: .det_benchmark + stage: simulate + script: + - mkdir $LOCAL_DATA_PATH/input + - ln -s $LOCAL_DATA_PATH/input input + - snakemake --cores 2 sim_output/$DETECTOR_CONFIG/beam_gas_{electron,proton}.edm4hep.root sim_output/$DETECTOR_CONFIG/pythia8NCDIS_10x100_minQ2=1_beamEffects_xAngle=-0.025_hiDiv_vtxfix_1.edm4hep.root + +bench:backgrounds_emcal_backwards: + extends: .det_benchmark + stage: benchmarks + needs: + - ["sim:backgrounds"] + script: + - ln -s $LOCAL_DATA_PATH/input input + - export PYTHONUSERBASE=$LOCAL_DATA_PATH/deps + - pip install -r benchmarks/backgrounds/requirements.txt + - snakemake --cores 8 backgrounds_ecal_backwards + +collect_results:backgrounds: + extends: .det_benchmark + stage: collect + needs: + - "bench:backgrounds_emcal_backwards" + script: + - ls -lrht diff --git a/benchmarks/backgrounds/ecal_backwards.org b/benchmarks/backgrounds/ecal_backwards.org new file mode 100644 index 00000000..a420358e --- /dev/null +++ b/benchmarks/backgrounds/ecal_backwards.org @@ -0,0 +1,447 @@ +#+PROPERTY: header-args:jupyter-python :session /jpy:localhost#8888:eeemcal :async yes :results drawer :exports both + +#+TITLE: ePIC EEEMCal background rates study +#+AUTHOR: Dmitry Kalinkin +#+OPTIONS: d:t + +#+begin_src jupyter-python :results silent +import os +from pathlib import Path + +import awkward as ak +import boost_histogram as bh +import dask +import dask_awkward as dak +import dask_histogram as dh +import numpy as np +import uproot +import pyhepmc +#+end_src + +#+begin_src jupyter-python :results silent +from dask.distributed import Client + +client = Client(os.environ.get("DASK_SCHEDULER", "localhost:8786")) +#+end_src + +* Plotting setup + +#+begin_src jupyter-python :results silent +import matplotlib as mpl +import matplotlib.pyplot as plt + +def setup_presentation_style(): + mpl.rcParams.update(mpl.rcParamsDefault) + plt.style.use('ggplot') + plt.rcParams.update({ + 'axes.labelsize': 8, + 'axes.titlesize': 9, + 'figure.titlesize': 9, + 'figure.figsize': (4, 3), + 'legend.fontsize': 7, + 'legend.loc': 'upper right', + 'xtick.labelsize': 8, + 'ytick.labelsize': 8, + 'pgf.rcfonts': False, + }) + +setup_presentation_style() +#+end_src + +* Analysis + +** Input files + +#+begin_src jupyter-python :results silent +ELECTRON_BEAM_GAS_GEN=os.environ.get("ELECTRON_BEAM_GAS_GEN", "../beam_gas_ep_10GeV_foam_emin10keV_10Mevt_vtx.hepmc") +ELECTRON_BEAM_GAS_SIM=os.environ.get("ELECTRON_BEAM_GAS_SIM", "electron_beam_gas.edm4hep.root") +PHYSICS_PROCESS_SIM=os.environ.get("PHYSICS_PROCESS_SIM", "pythia8NCDIS_10x100_minQ2=1_beamEffects_xAngle=-0.025_hiDiv_1.edm4hep.root") +PROTON_BEAM_GAS_GEN=os.environ.get("PROTON_BEAM_GAS_GEN", "100GeV.hepmc") +PROTON_BEAM_GAS_SIM=os.environ.get("PROTON_BEAM_GAS_SIM", "proton+beam_gas_ep.edm4hep.root") + +output_dir=Path(os.environ.get("OUTPUT_DIR", "./")) +output_dir.mkdir(parents=True, exist_ok=True) +#+end_src + +#+begin_src jupyter-python :results silent +builder = ak.ArrayBuilder() +n = 0 +with pyhepmc.open(PROTON_BEAM_GAS_GEN) as f: + it = iter(f) + for event in f: + builder.begin_list() + for vertex in event.vertices: + assert event.length_unit.name == "MM" + with builder.record("Vector4D"): + builder.field("x") + builder.real(vertex.position.x) + builder.field("y") + builder.real(vertex.position.y) + builder.field("z") + builder.real(vertex.position.z) + builder.field("t") + builder.real(vertex.position.t) + builder.end_list() + n += 1 + if n > 10000: break + +vertices_proton_beam_gas = builder.snapshot() + +builder = ak.ArrayBuilder() +n = 0 +with pyhepmc.open(ELECTRON_BEAM_GAS_GEN) as f: + it = iter(f) + for event in f: + builder.begin_list() + for vertex in event.vertices: + assert event.length_unit.name == "MM" + with builder.record("Vector3D"): + builder.field("x") + builder.real(vertex.position.x) + builder.field("y") + builder.real(vertex.position.y) + builder.field("z") + builder.real(vertex.position.z) + builder.field("t") + builder.real(vertex.position.t) + builder.end_list() + n += 1 + if n > 10000: break + +vertices_electron_beam_gas = builder.snapshot() +#+end_src + +#+begin_src jupyter-python :results silent +def filter_name(name): + return "Hits." in name or "MCParticles." in name + +datasets = { + # https://wiki.bnl.gov/EPIC/index.php?title=Electron_Beam_Gas + "electron beam gas 10 GeV": { + "vertices": vertices_electron_beam_gas, + "events": uproot.dask({ELECTRON_BEAM_GAS_SIM: "events"}, filter_name=filter_name, open_files=False, steps_per_file=32), + "cmap": "cool", + "rate": 3.2e6, # Hz + }, + "DIS 10x100, $Q^2 > 1$ GeV${}^2$": { + "events": uproot.dask({PHYSICS_PROCESS_SIM: "events"}, filter_name=filter_name, open_files=False, steps_per_file=32), + "rate": 184e3, # Hz + }, + # https://wiki.bnl.gov/EPIC/index.php?title=Hadron_Beam_Gas + "proton beam gas 100 GeV": { + "vertices": vertices_proton_beam_gas, + "events": uproot.dask({PROTON_BEAM_GAS_SIM: "events"}, filter_name=filter_name, open_files=False, steps_per_file=32), + "cmap": "summer", + "rate": 31.9e3, # Hz + }, +} + +for ds in datasets.values(): + ds["events"].eager_compute_divisions() +#+end_src + +** Vertex distributions + +#+begin_src jupyter-python +for label, ds in datasets.items(): + if "vertices" not in ds: continue + vs = ds["vertices"] + weight = ds["rate"] / ak.num(ds["vertices"], axis=0) + plt.hist(ak.ravel(vs.t[:,0]), bins=100, histtype="step", label=label) +plt.minorticks_on() +plt.xlabel("vertex[0].t, mm") +plt.legend() +plt.savefig(output_dir / "vertex_time_distribution.png", bbox_inches="tight") +plt.show() + +for label, ds in datasets.items(): + if "vertices" not in ds: continue + vs = ds["vertices"] + weight = ds["rate"] / ak.num(ds["vertices"], axis=0) + plt.hist(ak.ravel(vs.z[:,0]), bins=100, histtype="step", label=label) +plt.minorticks_on() +plt.xlabel("vertex[0].z, mm") +plt.legend() +plt.savefig(output_dir / "vertex_z_distribution.png", bbox_inches="tight") +plt.show() + +for label, ds in datasets.items(): + if "vertices" not in ds: continue + vs = ds["vertices"] + cmap = ds["cmap"] + weight = ds["rate"] / ak.num(ds["vertices"], axis=0) + plt.hist2d(vs.z[:,0].to_numpy(), vs.x[:,0].to_numpy(), bins=(100, np.linspace(-130, 130, 160)), cmin=1e-30, label=label, cmap=cmap) + plt.plot([], color=mpl.colormaps[cmap](0.5), label=label) +plt.minorticks_on() +plt.xlabel("vertex[0].z, mm") +plt.ylabel("vertex[0].x, mm") +plt.legend() +plt.savefig(output_dir / "vertex_xz_distribution.png", bbox_inches="tight") +plt.show() + +for ix, (label, ds) in enumerate(datasets.items()): + if "vertices" not in ds: continue + vs = ds["vertices"] + cmap = ds["cmap"] + weight = ds["rate"] / ak.num(ds["vertices"], axis=0) + plt.hist2d(vs.z[:,0].to_numpy(), vs.y[:,0].to_numpy(), bins=(100, 100), cmin=1e-30, cmap=cmap) + plt.colorbar() + plt.minorticks_on() + plt.xlabel("vertex[0].z, mm") + plt.ylabel("vertex[0].y, mm") + plt.title(label) + plt.savefig(output_dir / f"vertex_yz_distribution_{ix}.png", bbox_inches="tight") + plt.show() +#+end_src + +** Simulation results + +#+begin_src jupyter-python +for collection_name in ["EcalEndcapNHits", "EcalEndcapPHits"]: + for dataset_ix, (label, ds) in enumerate(datasets.items()): + events = ds["events"] + + energy_sums = ak.sum(events[f"{collection_name}.energy"].head(10000), axis=1) + event_id = ak.argmax(energy_sums) + xs = events[f"{collection_name}.position.x"].head(event_id + 1)[event_id].to_numpy() + ys = events[f"{collection_name}.position.y"].head(event_id + 1)[event_id].to_numpy() + + bin_widths = [None, None] + for ix, vals in enumerate([xs, ys]): + centers = np.unique(vals) + diffs = centers[1:] - centers[:-1] + bin_widths[ix] = np.min(diffs[diffs > 0]) if np.sum(diffs > 0) > 0 else 1. + print(f"bin_widths[{ix}]", bin_widths[ix]) + + bins = { + "EcalEndcapNHits": [np.arange(-750., 750., bin_width) for bin_width in bin_widths], + "EcalEndcapPHits": [np.arange(-1800., 1800., bin_width) for bin_width in bin_widths], + }[collection_name] + + plt.hist2d( + xs, + ys, + weights=events[f"{collection_name}.energy"].head(event_id + 1)[event_id].to_numpy(), + bins=bins, + cmin=1e-10, + ) + plt.colorbar().set_label("energy, GeV", loc="top") + plt.title(f"{label}, event_id={event_id}\n{collection_name}") + plt.xlabel("hit x, mm", loc="right") + plt.ylabel("hit y, mm", loc="top") + plt.savefig(output_dir / f"{collection_name}_event_display_{dataset_ix}.png", bbox_inches="tight") + plt.show() +#+end_src + +** Discovering number of cells + +Using HyperLogLog algorithm would be faster here, or actually load +DD4hep geometry and count sensitive volumes. + +#+begin_src jupyter-python +def unique(array): + if ak.backend(array) == "typetracer": + ak.typetracer.touch_data(array) + return array + return ak.from_numpy(np.unique(ak.to_numpy(ak.ravel(array)))) +unique_delayed = dask.delayed(unique) +len_delayed = dask.delayed(len) + +cellID_for_r = dict() + +for collection_name in ["EcalEndcapNHits", "EcalEndcapPHits"]: + r_axis = { + "EcalEndcapNHits": bh.axis.Regular(75, 0., 750.), + "EcalEndcapPHits": bh.axis.Regular(90, 0., 1800.), + }[collection_name] + ds = datasets["DIS 10x100, $Q^2 > 1$ GeV${}^2$"] + events = ds["events"] + + r = np.hypot( + ak.ravel(events[f"{collection_name}.position.x"]), + ak.ravel(events[f"{collection_name}.position.y"]), + ) + cellID = ak.ravel(events[f"{collection_name}.cellID"]) + + cellID_for_r[collection_name] = np.array(client.gather(client.compute([ + len_delayed(unique_delayed( + cellID[(r >= r_min) & (r < r_max)].map_partitions(unique) + )) + for r_min, r_max in zip(r_axis.edges[:-1], r_axis.edges[1:]) + ]))) + + print(cellID_for_r[collection_name]) + print(sum(cellID_for_r[collection_name])) + + plt.stairs( + cellID_for_r[collection_name], + r_axis.edges, + ) + + plt.title(f"{collection_name}") + plt.legend() + plt.xlabel("r, mm", loc="right") + dr = (r_axis.edges[1] - r_axis.edges[0]) + plt.ylabel(f"Number of towers per {dr} mm slice in $r$", loc="top") + plt.savefig(output_dir / f"{collection_name}_num_towers.png", bbox_inches="tight") + plt.show() +#+end_src + +** Plotting the rates + +#+begin_src jupyter-python +for collection_name in ["EcalEndcapNHits", "EcalEndcapPHits"]: + r_axis = { + "EcalEndcapNHits": bh.axis.Regular(75, 0., 750.), + "EcalEndcapPHits": bh.axis.Regular(90, 0., 1800.), + }[collection_name] + for edep_min in [0.005, 0.015, 0.050]: # GeV + for label, ds in datasets.items(): + events = ds["events"] + weight = ds["rate"] / len(events) + + r = np.hypot( + ak.ravel(events[f"{collection_name}.position.x"]), + ak.ravel(events[f"{collection_name}.position.y"]), + ) + edep = ak.ravel(events[f"{collection_name}.energy"]) + r = r[edep > edep_min] + + hist = dh.factory( + r, + axes=(r_axis,), + ).compute() + plt.stairs( + hist.values() * weight / cellID_for_r[collection_name], + hist.axes[0].edges, + label=f"{label}", + ) + + plt.title(f"for $E_{{dep.}} >$ {edep_min * 1000} MeV\n{collection_name}") + plt.legend() + plt.xlabel("r, mm", loc="right") + plt.ylabel("rate per tower, Hz", loc="top") + plt.yscale("log") + plt.savefig(output_dir / f"{collection_name}_hit_rate_vs_r_edep_min_{edep_min:.3f}.png", bbox_inches="tight") + plt.show() +#+end_src + +#+begin_src jupyter-python +for collection_name in ["EcalEndcapNHits", "EcalEndcapPHits"]: + for totedep_min in [-1, 0, 0.1, 0.5, 1.0, 5.0, 10.]: # GeV + for label, ds in datasets.items(): + events = ds["events"] + weight = ds["rate"] / len(events) + + z = ds["events"]["MCParticles.vertex.z"][:,1] + totedep = ak.sum(events[f"{collection_name}.energy"], axis=1) + z = z[totedep > totedep_min] + + hist = dh.factory( + z, + axes=(bh.axis.Regular(250, -7500., 17500.),), + ).compute() + plt.stairs( + hist.values() * weight, + hist.axes[0].edges, + label=f"{label}", + ) + + plt.title(rf"for events with $E_{{\mathrm{{dep. tot.}}}}$ $>$ {totedep_min} GeV" + f"\n{collection_name}") + plt.legend() + plt.xlabel("$z$ of the first interaction vertex, mm", loc="right") + plt.ylabel("rate, Hz", loc="top") + plt.yscale("log") + plt.savefig(output_dir / f"{collection_name}_hit_rate_vs_z_totedep_min_{totedep_min:.1f}.png", bbox_inches="tight") + plt.show() +#+end_src + +#+begin_src jupyter-python +num_towers_cache = { + "LumiSpecCAL": 200, + "LumiDirectPCAL": 1, + "ZDCHcal": 1470, + "LFHCAL": 578338, + "ZDC_WSi_": 187043, + "EcalBarrelScFi": 124205483, + "EcalEndcapP": 15037, + "ZDCEcal": 400, + "EcalEndcapPInsert": 536, + "HcalEndcapPInsert": 20251, + "B0ECal": 131, + "HcalEndcapN": 13800, + "HcalBarrel": 7680, + "EcalBarrelImaging": 5765469, + "EcalEndcapN": 2988, + "ZDC_PbSi_": 44344, +} + +fig_cmb = plt.figure() +ax_cmb = fig_cmb.gca() + +for edep_min in [0]: # GeV + for dataset_ix, (x_offset, (ds_label, ds)) in enumerate(zip(np.linspace(-0.3, 0.3, len(datasets)), datasets.items())): + events = ds["events"] + weight = ds["rate"] / len(events) + + labels = [] + values = [] + norms = [] + + for branch_name in events.fields: + if ".energy" not in branch_name: continue + if "ZDC_SiliconPix_Hits" in branch_name: continue + + edep = ak.ravel(events[branch_name]) + + #cellID = ak.ravel(events[branch_name.replace(".energy", ".cellID")]) + #num_towers = len(unique_delayed( + # cellID.map_partitions(unique) + #).compute()) + + key = branch_name.replace("Hits.energy", "") + if key not in num_towers_cache: + print(f"The \"{key}\" not in num_towers_cache. Skipping.") + continue + num_towers = num_towers_cache[key] + + labels.append(branch_name.replace("Hits.energy", "")) + values.append(ak.count(edep[edep > edep_min])) + norms.append(num_towers if num_towers != 0 else np.nan) + + fig_cur = plt.figure() + ax_cur = fig_cur.gca() + + values, = dask.compute(values) + for ax, per_tower, offset, width in [ + (ax_cmb, True, x_offset, 2 * 0.3 / (len(datasets) - 1)), + (ax_cur, False, 0, 2 * 0.3), + ]: + ax.bar( + np.arange(len(labels)) + offset, + weight * np.array(values) / (np.array(norms) if per_tower else np.ones_like(norms)), + width=width, + tick_label=labels, + label=ds_label, + color=f"C{dataset_ix}", + ) + + plt.sca(ax_cur) + plt.legend() + plt.title(f"for $E_{{dep.}} >$ {edep_min * 1000} MeV") + plt.ylabel("rate, Hz", loc="top") + plt.yscale("log") + plt.xticks(rotation=90, ha='right') + fig_cur.savefig(f"rates_edep_min_{edep_min}_{dataset_ix}.png", bbox_inches="tight") + plt.show() + plt.close(fig_cur) + + plt.sca(ax_cmb) + plt.legend() + plt.title(f"for $E_{{dep.}} >$ {edep_min * 1000} MeV") + plt.ylabel("rate per tower, Hz", loc="top") + plt.yscale("log") + plt.xticks(rotation=90, ha='right') + fig_cmb.savefig(f"rates_edep_min_{edep_min}.png", bbox_inches="tight") + plt.show() +#+end_src diff --git a/benchmarks/backgrounds/org2py.awk b/benchmarks/backgrounds/org2py.awk new file mode 100644 index 00000000..0d23cf25 --- /dev/null +++ b/benchmarks/backgrounds/org2py.awk @@ -0,0 +1,22 @@ +BEGIN { + in_src = 0 + IGNORECASE=1 +} + +/^#\+begin_src\s+[^\s]*python/ { + in_src = 1 + match($0, /^ */) + spaces = RLENGTH + next +} + +/^#\+end_src/ { + in_src = 0 + next +} + +in_src { + re = "^ {" spaces "}" + gsub(re,"") + print +} diff --git a/benchmarks/backgrounds/requirements.txt b/benchmarks/backgrounds/requirements.txt new file mode 100644 index 00000000..738152dd --- /dev/null +++ b/benchmarks/backgrounds/requirements.txt @@ -0,0 +1,7 @@ +awkward >= 2.4.0 +dask >= 2023 +dask_awkward +dask_histogram +distributed >= 2023 +pyhepmc +uproot >= 5.2.0 diff --git a/config.yaml b/config.yaml new file mode 100644 index 00000000..75d4ff68 --- /dev/null +++ b/config.yaml @@ -0,0 +1 @@ +remote: S3