-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
147 lines (131 loc) · 4.35 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import os
import time
import h5py
from tqdm import tqdm
import torch
import torch.nn.functional as F
import numpy as np
from dataloader import MyDataLoader, H5DataSource
from preprocess import prepare_batch
from modules.gac_net import GACNet
from modules.resnext import resnext_ys
from modules.lcz_res_net import resnet10, resnet18, resnet34, resnet50
from modules.lcz_senet import se_resnet_ys, se_resnet10_fc512, se_resnet15_fc512
from modules.lcz_xception import Xception
from modules.lcz_dense_net import densenet_ys, densenet121, densenet169, densenet201, densenet161
from config import *
if __name__ == '__main__':
for model_name in model_name_list:
BATCH_SIZE = 100
model_dir = os.path.join(model_root, model_name)
MODEL = model_name.split('_')[0]
# extra = '_best_single'
extra = ''
models = [
'M_curr.ckpt',
'M_best.ckpt',
'M_1.ckpt',
'M_2.ckpt',
'M_3.ckpt',
'M_4.ckpt',
'M_5.ckpt',
'M_6.ckpt'
]
if not os.path.isdir(results_root):
os.mkdir(results_root)
submit_dir = os.path.join(results_root, 'submit')
score_dir = os.path.join(results_root, 'score')
if not os.path.isdir(submit_dir):
os.mkdir(submit_dir)
if not os.path.isdir(score_dir):
os.mkdir(score_dir)
mean, std = None, None
# if ZSCORE:
# mean_std_h5 = h5py.File(mean_std_test_file, 'r')
# mean = torch.from_numpy(np.array(mean_std_h5['mean'])).float().cuda()
# std = torch.from_numpy(np.array(mean_std_h5['std'])).float().cuda()
# mean_std_h5.close()
if MODEL == 'GAC':
group_sizes = [3, 3,
3, 3, 2, 2,
4, 3, 3]
model = GACNet(group_sizes, 17, 32)
elif MODEL == 'XCEPTION':
model = Xception(N_CHANNEL, 17)
elif MODEL == 'RES10':
model = resnet10(N_CHANNEL, 17)
elif MODEL == 'RES18':
model = resnet18(N_CHANNEL, 17)
elif MODEL == 'SE-RES10':
model = se_resnet10_fc512(N_CHANNEL, 17)
elif MODEL == 'SE-RES15':
model = se_resnet15_fc512(N_CHANNEL, 17)
elif MODEL == 'SE-RES-YS':
model = se_resnet_ys(N_CHANNEL, 17)
elif MODEL == 'RESNEXT':
model = resnext_ys(N_CHANNEL, 17)
elif MODEL == 'DENSE121':
model = densenet121(N_CHANNEL, 17, drop_rate=0.3)
elif MODEL == 'DENSE201':
model = densenet201(N_CHANNEL, 17, drop_rate=0.3)
elif MODEL == 'DENSE-YS':
model = densenet_ys(N_CHANNEL, num_classes=17)
else:
group_sizes = [3, 3,
3, 3, 2, 2,
4, 3, 3]
model = GACNet(group_sizes, 17, 32)
model = model.cuda()
data_source = H5DataSource([test_file], BATCH_SIZE, shuffle=False)
test_loader = MyDataLoader(data_source.h5fids, data_source.indices)
n_model = 0
ensembled_pred = None
ensembled_score = 0
for t in range(TEST_REPEAT + 1):
for ckpt_name in models:
ckpt_path = os.path.join(model_dir, ckpt_name)
if os.path.isfile(ckpt_path):
print('load training param, ', ckpt_path)
state = torch.load(ckpt_path)
model.load_state_dict(state['model_state'])
m_score = state['score']
m_loss = state['loss']
if m_score < SCORE_THRESH:
continue
print('score:', m_score)
print('loss:', m_loss)
print('-' * 80)
print('Testing...')
total_score = None
with torch.no_grad():
model.eval()
for test_data, _, fidx in tqdm(test_loader):
time.sleep(0.02)
aug = True
if t == 0:
aug = False
test_input, _ = prepare_batch(test_data, None, fidx, mean, std, aug=aug)
# import matplotlib.pyplot as plt
# mm = mean[None,None,[8,6,7]]
# ss = std[None,None,[8,6,7]]
# img = (test_input[0][[8, 6, 7], :, :].permute(1,2,0) * ss + mm).cpu().numpy()
# plt.imshow(img * 2.55)
# plt.show()
test_out = F.softmax(model(test_input), -1)
score = test_out.detach().cpu().numpy()
if total_score is None:
# total_pred = pred
total_score = score
else:
# total_pred = np.concatenate([total_pred, pred])
total_score = np.concatenate([total_score, score])
ensembled_score += total_score
n_model += 1
del state
ensembled_score /= n_model
ensembled_pred = ensembled_score.argmax(-1)
submit = np.eye(17)[ensembled_pred.reshape(-1)]
np.savetxt(os.path.join(submit_dir, model_name + extra + '.csv'), submit, delimiter=',', fmt='%d')
np.savetxt(os.path.join(score_dir, model_name + extra + '.csv'), ensembled_score, delimiter=',', fmt='%.5f')
print('completed!')
print('-' * 80)