Skip to content
This repository has been archived by the owner on Nov 26, 2024. It is now read-only.

Latest commit

 

History

History
53 lines (37 loc) · 1.46 KB

README.md

File metadata and controls

53 lines (37 loc) · 1.46 KB

Machine Learning for Solid Waste Management

Install Anaconda Python 3:

Install Needed Extra Libraries:

  • pip install --upgrade google-api-python-client
  • pip install boto3
  • pip install awscli --upgrade --user

Install Docker and the caffe docker image:

  • sudo apt-get install docker.io
  • docker run -ti bvlc/caffe:cpu caffe --version

Make sure your AWS credentials are setup:

Setup ~/.aws/credentials with your key and secret:

[default]
aws_access_key_id = YOUR_KEY
aws_secret_access_key = YOUR_SECRET

Set the default region in ~/.aws/config:

[default]
region=ap-south-1

Updating the dataset

  1. Export the Google Drive Spreadsheet as a csv file
  2. Run ./process-csv csv-file-name
  3. Run ./package-dataset output-folder-path

Use the flag -f to force syncing with Google drive otherwise cached local copies will be used if available.

Downloading and Packaging the Dataset

  1. Run ./package-dataset directory-to-store-tarball

This will create a folder in your home directory called 'swm-ml-dataset' and save a tarball to the folder you specify.

Extracting Caffe Features

  1. sudo docker run -ti -v ~/swm-ml-dataset/images:/opt/caffe/swm-ml-dataset -v /home/ubuntu/swm-ml:/opt/caffe/swm-ml bvlc/caffe:cpu /bin/bash

Authors