-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathexample7_2.m
78 lines (48 loc) · 2.48 KB
/
example7_2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
%
% written by:
% Ernest Chan
%
% Author of “Quantitative Trading:
% How to Start Your Own Algorithmic Trading Business”
%
% www.epchan.com
clear; % make sure previously defined variables are erased.
[num, txt]=xlsread('GLD'); % read a spreadsheet named "GLD.xls" into MATLAB.
tday1=txt(2:end, 1); % the first column (starting from the second row) is the trading days in format mm/dd/yyyy.
tday1=datestr(datenum(tday1, 'mm/dd/yyyy'), 'yyyymmdd'); % convert the format into yyyymmdd.
tday1=str2double(cellstr(tday1)); % convert the date strings first into cell arrays and then into numeric format.
adjcls1=num(:, end); % the last column contains the adjusted close prices.
[num2, txt2]=xlsread('GDX'); % read a spreadsheet named "GDX.xls" into MATLAB.
tday2=txt2(2:end, 1); % the first column (starting from the second row) is the trading days in format mm/dd/yyyy.
tday2=datestr(datenum(tday2, 'mm/dd/yyyy'), 'yyyymmdd'); % convert the format into yyyymmdd.
tday2=str2double(cellstr(tday2)); % convert the date strings first into cell arrays and then into numeric format.
adjcls2=num2(:, end);
tday=union(tday1, tday2); % find all the days when either GLD or GDX has data.
[foo idx idx1]=intersect(tday, tday1);
adjcls=NaN(length(tday), 2); % combining the two price series
adjcls(idx, 1)=adjcls1(idx1);
[foo idx idx2]=intersect(tday, tday2);
adjcls(idx, 2)=adjcls2(idx2);
baddata=find(any(~isfinite(adjcls), 2)); % days where any one price is missing
tday(baddata)=[];
adjcls(baddata, :)=[];
vnames=strvcat('GLD', 'GDX');
res=cadf(adjcls(:, 1), adjcls(:, 2), 0, 1); % run cointegration check using augmented Dickey-Fuller test
prt(res, vnames);
% Output from cadf function:
% Augmented DF test for co-integration variables: GLD,GDX
% CADF t-statistic # of lags AR(1) estimate
% -3.35698533 1 -0.060892
%
% 1% Crit Value 5% Crit Value 10% Crit Value
% -3.819 -3.343 -3.042
% The t-statistic of -3.36 which is in between the 1% Crit Value of -3.819
% and the 5% Crit Value of -3.343 means that there is a better than 95%
% probability that these 2 time series are cointegrated.
results=ols(adjcls(:, 1), adjcls(:, 2));
hedgeRatio=results.beta
z=results.resid;
% A hedgeRatio of 1.6766 was found. I.e. GLD=1.6766*GDX + z, where z can be interpreted as the
% spread GLD-1.6766*GDX and should be stationary.
plot(z); % This should produce a chart similar to Figure 7.4.