-
Notifications
You must be signed in to change notification settings - Fork 0
/
erf.h
62 lines (58 loc) · 1.89 KB
/
erf.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#include <iostream>
#include <iomanip>
#include <cmath>
static const double rel_error = 1E-12; //calculate 12 significant figures
//you can adjust rel_error to trade off between accuracy and speed
//but don't ask for > 15 figures (assuming usual 52 bit mantissa in a double)
//double erf(double x)
double ErrorFunction(double x)
//erf(x) = 2/sqrt(pi)*integral(exp(-t^2),t,0,x)
// = 2/sqrt(pi)*[x - x^3/3 + x^5/5*2! - x^7/7*3! + ...]
// = 1-erfc(x)
{
static const double two_sqrtpi = 1.128379167095512574; // 2/sqrt(pi)
if (fabs(x) > 2.2) {
return 1.0 - erfc(x); //use continued fraction when fabs(x) > 2.2
}
double sum = x, term = x, xsqr = x * x;
int j = 1;
do {
term *= xsqr / j;
sum -= term / (2 * j + 1);
++j;
term *= xsqr / j;
sum += term / (2 * j + 1);
++j;
} while (fabs(term / sum) > rel_error);
return two_sqrtpi * sum;
}
double ErrorFunctionComplex(double x)
//erfc(x) = 2/sqrt(pi)*integral(exp(-t^2),t,x,inf)
// = exp(-x^2)/sqrt(pi) * [1/x+ (1/2)/x+ (2/2)/x+ (3/2)/x+ (4/2)/x+ ...]
// = 1-erf(x)
//expression inside [] is a continued fraction so '+' means add to denominator only
{
static const double one_sqrtpi = 0.564189583547756287; // 1/sqrt(pi)
if (fabs(x) < 2.2) {
return 1.0 - erf(x); //use series when fabs(x) < 2.2
}
if (std::signbit(x)) { //continued fraction only valid for x>0
return 2.0 - erfc(-x);
}
double a = 1, b = x; //last two convergent numerators
double c = x, d = x * x + 0.5; //last two convergent denominators
double q1, q2 = b / d; //last two convergents (a/c and b/d)
double n = 1.0, t;
do {
t = a * n + b * x;
a = b;
b = t;
t = c * n + d * x;
c = d;
d = t;
n += 0.5;
q1 = q2;
q2 = b / d;
} while (fabs(q1 - q2) / q2 > rel_error);
return one_sqrtpi * exp(-x * x) * q2;
}