From e09b1f88ad2eca30fe18fb6443b4f7c2bab8d08f Mon Sep 17 00:00:00 2001 From: casadoj Date: Thu, 4 Apr 2024 17:20:19 +0200 Subject: [PATCH] Add "count" to the available statistics --- src/lisfloodutilities/catchstats/catchstats.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/src/lisfloodutilities/catchstats/catchstats.py b/src/lisfloodutilities/catchstats/catchstats.py index 4fe5bdc..47265ed 100644 --- a/src/lisfloodutilities/catchstats/catchstats.py +++ b/src/lisfloodutilities/catchstats/catchstats.py @@ -23,7 +23,7 @@ def catchment_statistics(inputmaps: Union[str, Path], mask: Union[str, Path], - statistic: List[Literal['mean', 'sum', 'std', 'var', 'min', 'max', 'median']], + statistic: List[Literal['mean', 'sum', 'std', 'var', 'min', 'max', 'median', 'count']], output: Union[str, Path], pixarea: Optional[str] = None, overwrite: bool = False @@ -38,7 +38,7 @@ def catchment_statistics(inputmaps: Union[str, Path], mask: str or pathlib.Path directory that contains the NetCDF files that define the catchment boundaries. These files can be the output of the `cutmaps` tool statistic: list of strings - statistics to be computed. Only some statistics are available: 'mean', 'sum', 'std', 'var', 'min', 'max', 'median' + statistics to be computed. Only some statistics are available: 'mean', 'sum', 'std', 'var', 'min', 'max', 'median', 'count' output: str or pathlib.Path directory where the resulting NetCDF files will be saved. pixarea: optional or str @@ -58,7 +58,7 @@ def catchment_statistics(inputmaps: Union[str, Path], output.mkdir(parents=True, exist_ok=True) # check statistic - possible_stats = ['mean', 'sum', 'std', 'var', 'min', 'max', 'median'] + possible_stats = ['mean', 'sum', 'std', 'var', 'min', 'max', 'median', 'count'] assert all(stat in possible_stats for stat in statistic), "All values in 'statistic' should be one of these: {0}".format(', '.join(possible_stats)) # input maps @@ -160,7 +160,7 @@ def catchment_statistics(inputmaps: Union[str, Path], x = getattr(weighted_ds, stat)(dim=[x_dim, y_dim])[var] else: x = getattr(masked_ds, stat)(dim=[x_dim, y_dim])[var] - elif stat in ['min', 'max', 'median']: + elif stat in ['min', 'max', 'median', 'count']: x = getattr(masked_ds, stat)(dim=[x_dim, y_dim])[var] ds_aoi[f'{var}_{stat}'].loc[{'id': ID}] = x