Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add effect size (Cohen's d) to estimate_contrasts #227

Draft
wants to merge 9 commits into
base: main
Choose a base branch
from
12 changes: 9 additions & 3 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
Type: Package
Package: modelbased
Title: Estimation of Model-Based Predictions, Contrasts and Means
Version: 0.8.6.3
Version: 0.8.6.4
Authors@R:
c(person(given = "Dominique",
family = "Makowski",
Expand All @@ -22,7 +22,12 @@ Authors@R:
family = "Patil",
role = "aut",
email = "[email protected]",
comment = c(ORCID = "0000-0003-1995-6531", Twitter = "@patilindrajeets")))
comment = c(ORCID = "0000-0003-1995-6531", Twitter = "@patilindrajeets")),
person(given = "Rémi",
family = "Thériault",
role = c("aut"),
email = "[email protected]",
comment = c(ORCID = "0000-0003-4315-6788", Twitter = "@rempsyc")))
Maintainer: Dominique Makowski <[email protected]>
Description: Implements a general interface for model-based estimations
for a wide variety of models (see list of supported models using the
Expand Down Expand Up @@ -63,12 +68,13 @@ Suggests:
rstanarm,
rtdists,
see (>= 0.7.4),
bootES,
testthat
VignetteBuilder:
knitr
Encoding: UTF-8
Language: en-US
RoxygenNote: 7.2.3.9000
RoxygenNote: 7.2.3
Config/testthat/edition: 3
Config/testthat/parallel: true
Roxygen: list(markdown = TRUE)
Expand Down
2 changes: 2 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,7 @@
# modelbased (development version)

- `estimate_contrasts`: now supports optional standardized effect sizes, one of "none" (default), "emmeans", or "bootES" (#227, @rempsyc).

# modelbased 0.8.6

## Breaking Changes
Expand Down
100 changes: 100 additions & 0 deletions R/estimate_contrasts.R
Original file line number Diff line number Diff line change
Expand Up @@ -11,9 +11,49 @@
#' "bonferroni", "BH", "BY", "fdr" or "none". See the p-value adjustment
#' section in the `emmeans::test` documentation.
#' @param adjust Deprecated in favour of `p_adjust`.
#' @param effectsize Desired measure of standardized effect size, one of "none"
#' (default), "emmeans", "marginal", or "bootES".
#' @param bootES_type Specifies the type of effect-size measure to
#' estimate when using `effectsize = "bootES"`. One of `c("unstandardized",
#' "cohens.d", "hedges.g", "cohens.d.sigma", "r", "akp.robust.d")`. See`
#' effect.type` argument of [bootES::bootES] for details.
#' @param bootstraps The number of bootstrap resamples to perform.
#'
#' @inherit estimate_slopes details
#'
#' @section Effect Size: By default, `estimate_contrasts` reports no
#' standardized effect size on purpose. Should one request one, some things
#' are to keep in mind. As the authors of `emmeans` write, "There is
#' substantial disagreement among practitioners on what is the appropriate
#' sigma to use in computing effect sizes; or, indeed, whether any effect-size
#' measure is appropriate for some situations. The user is completely
#' responsible for specifying appropriate parameters (or for failing to do
#' so)."
#'
#' In particular, effect size method `"bootES"` does not correct
#' for covariates in the model, so should probably only be used when there is
rempsyc marked this conversation as resolved.
Show resolved Hide resolved
#' just one categorical predictor (with however many levels). Some believe that
#' if there are multiple predictors or any covariates, it is important to
#' re-compute sigma adding back in the response variance associated with the
#' variables that aren't part of the contrast.
#'
#' `effectsize = "emmeans"` uses [emmeans::eff_size] with
rempsyc marked this conversation as resolved.
Show resolved Hide resolved
#' `sigma = stats::sigma(model)`, `edf = stats::df.residual(model)` and
#' `method = "identity")`. This standardizes using the MSE (sigma). Some believe
#' this works when the contrasts are the only predictors in the model, but not
#' when there are covariates. The response variance accounted for by the
#' covariates should not be removed from the SD used to standardize. Otherwise,
#' _d_ will be overestimated.
#'
#' `effectsize = "marginal"` uses the following formula to compute effect
#' size: `d_adj <- difference * (1- R2)/ sigma`. This standardized
#' using the response SD with only the between-groups variance on the focal
#' factor/contrast removed. This allows for groups to be equated on their
#' covariates, but creates an appropriate scale for standardizing the response.
#'
#' `effectsize = "bootES"` uses bootstrapping (defaults to a low value of
#' 200) through [bootES::bootES]. Adjust for contrasts, but not for covariates.
#'
#' @examplesIf require("emmeans", quietly = TRUE)
#' # Basic usage
#' model <- lm(Sepal.Width ~ Species, data = iris)
Expand Down Expand Up @@ -83,6 +123,9 @@ estimate_contrasts <- function(model,
p_adjust = "holm",
method = "pairwise",
adjust = NULL,
effectsize = "none",
bootstraps = 200,
bootES_type = "cohens.d",
...) {
# Deprecation
if (!is.null(adjust)) {
Expand Down Expand Up @@ -135,6 +178,63 @@ estimate_contrasts <- function(model,
contrasts$contrast <- NULL
contrasts <- cbind(level_cols, contrasts)

# Add standardized effect size
if (!effectsize %in% c("none", "emmeans", "marginal", "bootES")) {
message("Unsupported effect size '", effectsize, "', returning none.")
}

if (effectsize == "emmeans") {
eff <- emmeans::eff_size(
estimated, sigma = stats::sigma(model),
edf = stats::df.residual(model), method = "identity")
eff <- as.data.frame(eff)
eff <- eff[c(2, 5:6)]
names(eff) <- c("partial_d", "es_CI_low", "es_CI_high")
contrasts <- cbind(contrasts, eff)

} else if (effectsize == "marginal") {
# Original: d_adj <- t * se_b / sigma * sqrt(1 - R2_cov)
# d_adj <- contrasts$t * contrasts$SE / sigma(model) * sqrt(1 - R2)
# New: d_adj <- difference * (1- R2)/ sigma
R2 <- summary(model)$r.squared
d_adj <- contrasts$Difference * (1 - R2) / sigma(model)
contrasts <- cbind(contrasts, marginal_d = d_adj)

} else if (effectsize == "bootES") {
if (bootstraps < 500) {
message("Number of bootstraps probably too low. Consider increasing it.")
}

insight::check_if_installed("bootES")
dat <- insight::get_data(model)
resp <- insight::find_response(model)
group <- names([email protected]$xlev)
contrast <- estimated@misc$con.coef

contrast <- lapply(seq_len(nrow(contrast)), function(x) {
z <- contrast[x, ]
names(z) <- levels(as.factor(dat[[group]]))
z
})

es.lists <- lapply(contrast, function(x) {
y <- bootES::bootES(
data = stats::na.omit(dat),
R = bootstraps,
data.col = resp,
group.col = group,
contrast = x,
effect.type = bootES_type
)
y <- as.data.frame(summary(y))})

eff <- do.call(rbind, es.lists)
eff <- eff[1:3]
names(eff) <- c(bootES_type, paste0(bootES_type, "_CI_low"),
paste0(bootES_type, "es_CI_high"))

contrasts <- cbind(contrasts, eff)
}

# Table formatting
attr(contrasts, "table_title") <- c("Marginal Contrasts Analysis", "blue")
Expand Down
46 changes: 46 additions & 0 deletions man/estimate_contrasts.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

1 change: 1 addition & 0 deletions man/modelbased-package.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.