-
Notifications
You must be signed in to change notification settings - Fork 2
/
PyFire.py
574 lines (492 loc) · 19.4 KB
/
PyFire.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
import torch
import torch.nn as nn
import torch.nn.functional as F
from IPython.display import clear_output
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import os.path
import tqdm
import time
import re
import glob
class Trainer(object):
def __init__(self, model, optimizer, scheduler=None, loss_func=None, metric_func=None, verbose=0, device='cuda', dest=None, **kwargs):
self.device = device
self.model = model.to(device)
if type(loss_func) == dict:
self.loss_func = loss_func
elif hasattr(loss_func, '__call__'):
self.loss_func = {'Loss': loss_func}
self.optimizer = optimizer
self.scheduler = scheduler
try:
self.switcher = kwargs['optimizer_switcher_callback']
except KeyError:
self.switcher = None
assert ((self.scheduler and self.switcher) is None), 'Scheduler and switcher are incompatible options'
try:
self.saver = kwargs['model_saver_callback']
except KeyError:
self.saver = None
if dest is None: assert self.saver is None, 'If no destination is specified, the saver callback cannot be activated'
if type(metric_func) == dict:
self.metric_func = metric_func
elif hasattr(metric_func, '__call__'):
self.metric_func = {'Metric': metric_func}
else:
self.metric_func = None
self.verbose = verbose
for key in kwargs:
if 'loss' in key:
self.loss_func[key] = kwargs[key]
if 'metric' in key:
self.metric_func[key] = kwargs[key]
try:
self.multi_loss_weights = list(kwargs['weights'])
except KeyError:
self.multi_loss_weights = [1]
try:
self.regularizer = kwargs['L2_regularizer_callback']
lambda_factor = self.regularizer['lambda']
def L2_reg(model):
return lambda_factor * sum(p.pow(2.0).sum() for p in model.parameters())
self.loss_func['L2_reg'] = lambda *args: L2_reg(self.model)
self.multi_loss_weights.append(1)
except KeyError:
pass
assert len(self.multi_loss_weights) == len(self.loss_func), 'Unbalanced loss functions and weights'
try:
self.weights_func = kwargs['weights_func']
except KeyError:
self.weights_func = None
self.dest = dest
if dest is not None:
assert type(dest) == str
if self.dest[-1] != '/':
self.dest += '/'
if not os.path.isdir(dest):
os.mkdir(dest)
if not os.listdir(dest):
os.mkdir(self.dest + 'Figures')
os.mkdir(self.dest + 'Training Logs')
os.mkdir(self.dest + 'Models')
os.mkdir(self.dest + 'Checkpoints')
os.mkdir(self.dest + 'Evaluation Logs')
os.mkdir(self.dest + 'Results')
else:
print('Directory already exists! Do you wish to continue? (Y/N)')
user_input = input()
if user_input == 'Y':
clear_output()
else:
raise ValueError('Choose a different name before proceeding.')
def fit(self, train_loader, val_loader, epochs):
"""Checkpoint loading adapted from work by Maddie Cusimano"""
ckpts = glob.glob(f'{self.dest}Checkpoints/ckpt*.pth.tar')
if len(ckpts) > 0:
ckpts = sorted(ckpts,
key=lambda x: int(re.search('\d+', re.split(r'/', x)[-1])[0]))
ckpt_path = ckpts[-1]
print(f'Loading ckpt: {ckpt_path}\n')
ckpt = torch.load(ckpt_path,
map_location=self.device)
self.model.load_state_dict(ckpt['model_state_dict'])
self.optimizer.load_state_dict(ckpt['optimizer_state_dict'])
loss_history_train = ckpt['train_losses']
loss_history_val = ckpt['val_losses']
try:
metric_history_train = ckpt['train_metrics']
metric_history_val = ckpt['val_metrics']
except KeyError:
metric_history_train = None
metric_history_val = None
if self.scheduler is not None:
self.scheduler.load_state_dict(ckpt['scheduler_state_dict'])
start_epoch = ckpt['epoch']
print(f'Loaded ckpt and restarting at epoch {start_epoch + 1}\n')
else:
start_epoch = 0
loss_history_train = [[] for _ in self.loss_func]
if len(self.loss_func) > 1:
loss_history_train.append([])
loss_history_val = [[] for _ in self.loss_func]
if len(self.loss_func) > 1:
loss_history_val.append([])
if self.metric_func is not None:
metric_history_train = [[] for _ in self.metric_func]
metric_history_val = [[] for _ in self.metric_func]
else:
metric_history_train = None
metric_history_val = None
for epoch in range(start_epoch, epochs):
running_loss_train = [0.0 for _ in self.loss_func]
if len(self.loss_func) > 1:
running_loss_train.append(0.0)
running_loss_val = [0.0 for _ in self.loss_func]
if len(self.loss_func) > 1:
running_loss_val.append(0.0)
if self.metric_func is not None:
running_metric_train = [0.0 for _ in self.metric_func]
running_metric_val = [0.0 for _ in self.metric_func]
else:
running_metric_train = None
running_metric_val = None
starttime = time.time()
running_loss_train, running_metric_train = self.train_step(train_loader,
running_loss_train,
running_metric_train)
running_loss_val, running_metric_val = self.validation_step(val_loader,
running_loss_val,
running_metric_val)
if self.scheduler is not None:
try:
self.scheduler.step()
except TypeError:
self.scheduler.step(running_loss_val[-1])
if self.switcher is not None:
if (epoch+1) == self.switcher['epoch']:
print(f'Switcher callback activated >>>>> Old Optimizer: {self.optimizer}')
self.optimizer = self.switcher['optimizer'](self.model)
print(f' >>>>> New Optimizer: {self.optimizer}')
time.sleep(1)
endtime = int(np.round(time.time() - starttime, decimals=0))
try:
its = np.round(len(train_loader) / endtime, decimals=2)
except ZeroDivisionError:
its = np.round(len(train_loader) / (endtime+1e-100), decimals=2)
clear_output()
for history_i, loss_i in zip(loss_history_train, running_loss_train):
history_i.append(loss_i)
for history_i, loss_i in zip(loss_history_val, running_loss_val):
history_i.append(loss_i)
if self.metric_func is not None:
for history_i, metric_i in zip(metric_history_train, running_metric_train):
history_i.append(metric_i)
for history_i, metric_i in zip(metric_history_val, running_metric_val):
history_i.append(metric_i)
if self.weights_func is not None:
self.multi_loss_weights = self.weights_func(self.multi_loss_weights, epoch)
if self.saver is not None:
if ((epoch+1) >= self.saver['epoch']) and ((epoch+1) % self.saver['save_every'] == 0):
file_name = f'{self.dest}/Checkpoints/ckpt{epoch+1}.pth.tar'
ckpt_dict = {
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'epoch': epoch + 1,
'train_losses': loss_history_train,
'val_losses': loss_history_val
}
if self.metric_func is not None:
ckpt_dict['train_metrics'] = metric_history_train
ckpt_dict['val_metrics'] = metric_history_val
if self.scheduler is not None:
ckpt_dict['scheduler_state_dict'] = self.scheduler.state_dict()
torch.save(ckpt_dict, file_name)
print_statement = f'Epoch: {epoch+1} \n >>>>> '
counter = 0
if len(self.loss_func)==1:
for key, value in zip(self.loss_func.keys(), running_loss_train):
counter += 1
if counter < len(self.loss_func.keys()):
print_statement += f'Train {key}: {np.round(value, decimals=5)} --- '
else:
print_statement += f'Train {key}: {np.round(value, decimals=5)} \n >>>>> '
else:
for key, value in zip([*self.loss_func.keys(), 'Total Loss'], running_loss_train):
counter += 1
if counter <= len(self.loss_func.keys()):
print_statement += f'Train {key}: {np.round(value, decimals=5)} --- '
else:
print_statement += f'Train {key}: {np.round(value, decimals=5)} \n >>>>> '
counter = 0
if len(self.loss_func)==1:
for key, value in zip(self.loss_func.keys(), running_loss_val):
counter += 1
if counter < len(self.loss_func.keys()):
print_statement += f'Val {key}: {np.round(value, decimals=5)} --- '
else:
print_statement += f'Val {key}: {np.round(value, decimals=5)}'
else:
for key, value in zip([*self.loss_func.keys(), 'Total Loss'], running_loss_val):
counter += 1
if counter <= len(self.loss_func.keys()):
print_statement += f'Val {key}: {np.round(value, decimals=5)} --- '
else:
print_statement += f'Val {key}: {np.round(value, decimals=5)}'
if self.metric_func is not None:
counter = 0
for key, value in zip(self.metric_func.keys(), running_metric_train):
counter += 1
if counter == 1:
print_statement += f'\n >>>>> '
print_statement += f'Train {key}: {np.round(value, decimals=5)} --- '
counter = 0
for key, value in zip(self.metric_func.keys(), running_metric_val):
counter += 1
if counter < len(self.metric_func.keys()):
print_statement += f'Val {key}: {np.round(value, decimals=5)} --- '
else:
print_statement += f'Val {key}: {np.round(value, decimals=5)} '
print_statement += f'\n >>>>> {endtime}s: {its}it/s'
if self.verbose==1:
print(print_statement)
elif self.verbose==2:
print(print_statement)
fig = self.training_curves(epochs,
loss_history_train,
loss_history_val,
metric_history_train,
metric_history_val)
if self.dest is not None:
file_name = self.dest + 'Training Logs/table.csv'
d = {'Epochs': np.arange(1, epochs+1)}
loss_keys = list(self.loss_func.keys())
loss_weights = self.multi_loss_weights
loss_keys = [f'{w}{k}' for w, k in zip(loss_weights, loss_keys)]
if len(self.loss_func) > 1:
loss_keys.append('Total Loss')
for k, value in zip(loss_keys, loss_history_train):
k = f'Train {k}'
d[k] = value
for k, value in zip(loss_keys, loss_history_val):
k = f'Val {k}'
d[k] = value
if self.metric_func is not None:
metric_keys = list(self.metric_func.keys())
for k, value in zip(metric_keys, metric_history_train):
k = f'Train {k}'
d[k] = value
for k, value in zip(metric_keys, metric_history_val):
k = f'Val {k}'
d[k] = value
df = pd.DataFrame(d)
df.to_csv(file_name, index=False)
try:
fig.savefig(self.dest + 'Figures/training_curves.png')
except:
pass
return df
else:
return None
def train_step(self, dataloader, running_loss, running_metric=None):
for i, data in tqdm.tqdm(enumerate(dataloader), total=len(dataloader)):
data = [d_i.to(self.device) for d_i in data]
self.model.train()
self.optimizer.zero_grad()
outputs = self.model(data[0])
loss = [self.loss_func[key](outputs, data[1])*w for key, w in zip(self.loss_func.keys(), self.multi_loss_weights)]
total_loss = sum(loss)
total_loss.backward()
self.optimizer.step()
running_loss[:-1] = [r_i + l_i.item() for r_i, l_i in zip(running_loss, loss)]
running_loss[-1] += total_loss.item()
if self.metric_func is not None:
if type(outputs) != list and type(outputs) != tuple:
outputs = [outputs]
metric = [self.metric_func[key](*[o.detach() for o in outputs], data) for key in self.metric_func.keys()]
running_metric = [r_i + m_i.item() for r_i, m_i in zip(running_metric, metric)]
running_loss = [r_i / len(dataloader) for r_i in running_loss]
try:
running_metric = [r_i / len(dataloader) for r_i in running_metric]
except:
running_metric = None
return running_loss, running_metric
def validation_step(self, dataloader, running_loss, running_metric=None):
for i, data in enumerate(dataloader):
data = [d_i.to(self.device) for d_i in data]
self.model.eval()
with torch.no_grad():
outputs = self.model(data[0])
loss = [self.loss_func[key](outputs, data[1])*w for key, w in zip(self.loss_func.keys(), self.multi_loss_weights)]
total_loss = sum(loss)
running_loss[:-1] = [r_i + l_i.item() for r_i, l_i in zip(running_loss, loss)]
running_loss[-1] += total_loss.item()
if self.metric_func is not None:
if type(outputs) != list and type(outputs) != tuple:
outputs = [outputs]
metric = [self.metric_func[key](*[o.detach() for o in outputs], data) for key in self.metric_func.keys()]
running_metric = [r_i + m_i.item() for r_i, m_i in zip(running_metric, metric)]
running_loss = [r_i / len(dataloader) for r_i in running_loss]
try:
running_metric = [r_i / len(dataloader) for r_i in running_metric]
except:
running_metric = None
return running_loss, running_metric
def evaluate(self, dataloader, *args, to_device='cpu', return_data=True):
### WORKS FOR SINGLE OUTPUT MODELS###
loss_keys = list(self.loss_func.keys())
if len(self.loss_func) > 1:
loss_keys.append('Total Loss')
running_loss = [0.0 for _ in self.loss_func]
if len(self.loss_func) > 1:
running_loss.append(0.0)
if self.metric_func is not None:
running_metric = [0.0 for _ in self.metric_func]
else:
running_metric = None
self.model.eval()
with torch.no_grad():
self.model = self.model.to(to_device)
for i, data_batch in tqdm.tqdm(enumerate(dataloader), total=len(dataloader)):
data_batch = [d_i.to(to_device).detach() for d_i in data_batch]
predictions_batch = [self.model(data_batch[0]).detach()]
loss = [self.loss_func[key](predictions_batch[0], data_batch[1])*w for key, w in zip(self.loss_func.keys(), self.multi_loss_weights)]
total_loss = sum(loss)
running_loss[:-1] = [r_i + l_i.item() for r_i, l_i in zip(running_loss, loss)]
running_loss[-1] += total_loss.item()
if self.metric_func is not None:
metric = [self.metric_func[key](predictions_batch[0], data_batch) for key in self.metric_func.keys()]
running_metric = [r_i + m_i.item() for r_i, m_i in zip(running_metric, metric)]
if return_data:
if i == 0:
data = [d_i.to('cpu') for d_i in data_batch]
predictions = [p_i.to('cpu') for p_i in predictions_batch]
else:
data = [torch.cat([d_i.to('cpu'), db_i.to('cpu')], dim=0) for d_i, db_i in zip(data, data_batch)]
predictions = [torch.cat([p_i.to('cpu'), pb_i.to('cpu')], dim=0) for p_i, pb_i in zip(predictions, predictions_batch)]
final_loss = [r_i / len(dataloader) for r_i in running_loss]
try:
final_metric = [r_i / len(dataloader) for r_i in running_metric]
except:
final_metric = None
d = {}
print_statement = f'Evaluation: \n >>>>> '
counter = 0
for key, value in zip(loss_keys, final_loss):
d[key] = value
counter += 1
if counter < len(self.loss_func.keys()):
print_statement += f'{key}: {np.round(value, decimals=5)} --- '
else:
print_statement += f'{key}: {np.round(value, decimals=5)} '
if self.metric_func is not None:
counter = 0
for key, value in zip(self.metric_func.keys(), final_metric):
d[key] = value
counter += 1
if counter < len(self.metric_func.keys()):
if counter == 1:
print_statement += f'\n >>>>> '
print_statement += f'{key}: {np.round(value, decimals=5)} --- '
else:
if counter == 1:
print_statement += f'\n >>>>> '
print_statement += f'{key}: {np.round(value, decimals=5)} '
print(print_statement)
if self.dest is not None:
file_name = self.dest + 'Evaluation Logs/'
for arg in args:
file_name += f'{arg}_'
file_name += 'table.csv'
df = pd.DataFrame(d, index=[0])
df.to_csv(file_name, index=False)
if return_data:
return data, predictions
else:
return None, None
def predict(self, input, to_device='cpu'):
self.model.eval()
self.model = self.model.to(to_device)
with torch.no_grad():
output = self.model(input)
return output
def training_curves(self, iterations, loss_history_train, loss_history_val, metric_history_train=None, metric_history_val=None):
if self.metric_func is not None:
fig, axes = plt.subplots(1, 1 + len(self.metric_func), figsize=(12,4))
fig.tight_layout(pad=3)
if len(self.loss_func)==1:
for key, value in zip(self.loss_func.keys(), loss_history_train):
plot_range = np.arange(1, len(value)+1)
axes[0].plot(plot_range, value, label=f'Train {key}')
for key, value in zip(self.loss_func.keys(), loss_history_val):
plot_range = np.arange(1, len(value)+1)
axes[0].plot(plot_range, value, label=f'Val {key}')
else:
for key, value in zip([*self.loss_func.keys(), 'Total Loss'], loss_history_train):
plot_range = np.arange(1, len(value)+1)
axes[0].plot(plot_range, value, label=f'Train {key}')
for key, value in zip([*self.loss_func.keys(), 'Total Loss'], loss_history_val):
plot_range = np.arange(1, len(value)+1)
axes[0].plot(plot_range, value, label=f'Val {key}')
axes[0].set_xlabel('Epoch')
axes[0].set_ylabel('Loss')
axes[0].set_ylim(bottom=0)
axes[0].set_xlim([1, iterations])
#axes[0].set_xticks(np.arange(1, iterations+1))
axes[0].legend()
counter = 1
for key, value in zip(self.metric_func.keys(), metric_history_train):
plot_range = np.arange(1, len(value)+1)
axes[counter].plot(plot_range, value, label=f'Train {key}')
counter += 1
counter = 1
for key, value in zip(self.metric_func.keys(), metric_history_val):
plot_range = np.arange(1, len(value)+1)
axes[counter].plot(plot_range, value, label=f'Val {key}')
counter += 1
for ax in axes[1:]:
ax.set_xlabel('Epoch')
ax.set_ylabel('Metric')
ax.set_xlim([1, iterations])
#ax.set_xticks(np.arange(1, iterations+1))
ax.legend()
plt.show()
else:
fig = plt.figure(figsize=(6,4))
if len(self.loss_func)==1:
for key, value in zip(self.loss_func.keys(), loss_history_train):
plot_range = np.arange(1, len(value)+1)
plt.plot(plot_range, value, label=f'Train {key}')
for key, value in zip(self.loss_func.keys(), loss_history_val):
plot_range = np.arange(1, len(value)+1)
plt.plot(plot_range, value, label=f'Val {key}')
else:
counter = 1
for key, value in zip([*self.loss_func.keys(), 'Total Loss'], loss_history_train):
plot_range = np.arange(1, len(value) + 1)
plt.plot(plot_range, value, label=f'Train {key}')
for key, value in zip([*self.loss_func.keys(), 'Total Loss'], loss_history_val):
plot_range = np.arange(1, len(value) + 1)
plt.plot(plot_range, value, label=f'Val {key}')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.xlim([1, iterations])
plt.ylim(bottom=0)
#plt.xticks(np.arange(1, iterations+1))
plt.legend()
plt.show()
return fig
def save_model(self, *args, dir_path ='Models/'):
if self.dest is None:
file_name = ''
else:
file_name = self.dest
file_name += dir_path
loss_keys = list(self.loss_func.keys())
if len(self.loss_func) > 1:
loss_keys.append('Total Loss')
loss_weights = self.multi_loss_weights
for k, w in zip(loss_keys, loss_weights):
k = re.sub('_', '', k)
file_name += f'{w}{k}_'
if self.metric_func is not None:
metric_keys = list(self.metric_func.keys())
for k in metric_keys:
k = re.sub('_', '', k)
file_name += f'{k}_'
for i, arg in enumerate(args):
if i < len(args)-1:
file_name += f'{arg}_'
else:
file_name += f'{arg}'
file_name += '.pt'
if not os.path.exists(file_name):
torch.save(self.model.state_dict(), file_name)
else:
print('File already exists! Do you wish to replace it? (Y/N)')
replace = input()
if replace == 'Y':
torch.save(self.model.state_dict(), file_name)
else:
raise ValueError('Choose a different name or delete the existing file.')