diff --git a/.gitignore b/.gitignore
index 03e98ee..4190ed7 100644
--- a/.gitignore
+++ b/.gitignore
@@ -133,10 +133,10 @@ cython_debug/
snippitlib.md
ethics.md
docsnippitlib.md
-AMI.code-worckspace
+*.code-worckspace
desktop.ini
implimentation_list.md
AMI.md
-AMI.code-workspace
-.gitHub/
+
+# Working Documents
themathupgrade.txt
\ No newline at end of file
diff --git a/app.py b/app.py
new file mode 100644
index 0000000..e9eb8ef
--- /dev/null
+++ b/app.py
@@ -0,0 +1,49 @@
+from flask import Flask, render_template, request, jsonify
+from src.harmonic_balancer import EnhancedHarmonicBalancer
+import numpy as np
+
+app = Flask(__name__)
+
+@app.route('/')
+def index():
+ return render_template('index.html')
+
+@app.route('/api/balance', methods=['POST'])
+def balance():
+ data = request.json
+ base_freq = data['baseFreq']
+ harmonic_level = data['harmonicLevel']
+
+ # Generate a sample signal
+ t = np.linspace(0, 1, 1000)
+ signal = np.sin(2 * np.pi * base_freq * t) + (harmonic_level / 100) * np.sin(2 * np.pi * 2 * base_freq * t)
+
+ # Process the signal
+ balancer = EnhancedHarmonicBalancer(base_freq, num_harmonics=5, application='power')
+ balanced_signal = balancer.balance_signal(signal, sample_rate=1000)
+
+ # Calculate THD before and after
+ thd_before = balancer.calculate_thd(signal, 1000)
+ thd_after = balancer.calculate_thd(balanced_signal, 1000)
+
+ # Prepare data for plotting
+ return jsonify({
+ 'signals': [
+ {'x': t.tolist(), 'y': signal.tolist(), 'type': 'scatter', 'name': 'Original'},
+ {'x': t.tolist(), 'y': balanced_signal.tolist(), 'type': 'scatter', 'name': 'Balanced'}
+ ],
+ 'layout': {'title': 'Signal Comparison'},
+ 'spectrum': [
+ {'x': np.fft.fftfreq(1000, 1/1000)[:500].tolist(), 'y': np.abs(np.fft.fft(signal))[:500].tolist(), 'type': 'scatter', 'name': 'Original Spectrum'},
+ {'x': np.fft.fftfreq(1000, 1/1000)[:500].tolist(), 'y': np.abs(np.fft.fft(balanced_signal))[:500].tolist(), 'type': 'scatter', 'name': 'Balanced Spectrum'}
+ ],
+ 'spectrumLayout': {'title': 'Frequency Spectrum'},
+ 'metrics': {
+ 'thdBefore': f"{thd_before:.2%}",
+ 'thdAfter': f"{thd_after:.2%}",
+ 'improvement': f"{(thd_before - thd_after) / thd_before:.2%}"
+ }
+ })
+
+if __name__ == '__main__':
+ app.run(debug=True)
\ No newline at end of file
diff --git a/css/style.css b/css/style.css
new file mode 100644
index 0000000..f616d0a
--- /dev/null
+++ b/css/style.css
@@ -0,0 +1,66 @@
+body {
+ font-family: Arial, sans-serif;
+ margin: 0;
+ padding: 20px;
+ background-color: #f0f0f0;
+}
+
+.container {
+ max-width: 1200px;
+ margin: 0 auto;
+ background-color: white;
+ padding: 20px;
+ border-radius: 10px;
+ box-shadow: 0 0 10px rgba(0,0,0,0.1);
+}
+
+h1 {
+ text-align: center;
+ color: #333;
+}
+
+.control-panel {
+ display: flex;
+ justify-content: space-between;
+ align-items: center;
+ margin-bottom: 20px;
+}
+
+.parameters {
+ display: flex;
+ gap: 20px;
+}
+
+.visualization {
+ display: flex;
+ gap: 20px;
+ margin-bottom: 20px;
+}
+
+#signalPlot, #spectrumPlot {
+ flex: 1;
+ height: 400px;
+}
+
+.metrics {
+ display: flex;
+ justify-content: space-around;
+}
+
+.metric-box {
+ text-align: center;
+ background-color: #f9f9f9;
+ padding: 10px;
+ border-radius: 5px;
+}
+
+.metric-box h3 {
+ margin: 0;
+ color: #666;
+}
+
+.metric-box span {
+ font-size: 24px;
+ font-weight: bold;
+ color: #333;
+}
\ No newline at end of file
diff --git a/index.html b/index.html
new file mode 100644
index 0000000..4a3713c
--- /dev/null
+++ b/index.html
@@ -0,0 +1,41 @@
+
+
+
+
+
+ Harmonic Balancer Demo
+
+
+
+
+
+
Harmonic Balancer Demonstration
+
+
+
+
+
THD Before
+ 0%
+
+
+
THD After
+ 0%
+
+
+
Improvement
+ 0%
+
+
+
+
+
+
\ No newline at end of file
diff --git a/js/demo.js b/js/demo.js
new file mode 100644
index 0000000..bdde1be
--- /dev/null
+++ b/js/demo.js
@@ -0,0 +1,33 @@
+document.addEventListener('DOMContentLoaded', function() {
+ const startButton = document.getElementById('startDemo');
+ const baseFreqInput = document.getElementById('baseFreq');
+ const harmonicLevelInput = document.getElementById('harmonicLevel');
+
+ function updatePlots() {
+ fetch('/api/balance', {
+ method: 'POST',
+ headers: {
+ 'Content-Type': 'application/json',
+ },
+ body: JSON.stringify({
+ baseFreq: parseFloat(baseFreqInput.value),
+ harmonicLevel: parseFloat(harmonicLevelInput.value)
+ }),
+ })
+ .then(response => response.json())
+ .then(data => {
+ // Update plots
+ Plotly.newPlot('signalPlot', data.signals, data.layout);
+ Plotly.newPlot('spectrumPlot', data.spectrum, data.spectrumLayout);
+
+ // Update metrics
+ document.getElementById('thdBefore').textContent = data.metrics.thdBefore;
+ document.getElementById('thdAfter').textContent = data.metrics.thdAfter;
+ document.getElementById('improvement').textContent = data.metrics.improvement;
+ });
+ }
+
+ startButton.addEventListener('click', updatePlots);
+ baseFreqInput.addEventListener('change', updatePlots);
+ harmonicLevelInput.addEventListener('input', updatePlots);
+});
\ No newline at end of file
diff --git a/requirements.txt b/requirements.txt
new file mode 100644
index 0000000..becac98
--- /dev/null
+++ b/requirements.txt
@@ -0,0 +1,3 @@
+numpy>=1.18.0
+scipy>=1.4.0
+matplotlib>=3.1.0
\ No newline at end of file
diff --git a/src/__init__.py b/src/__init__.py
new file mode 100644
index 0000000..a7e3071
--- /dev/null
+++ b/src/__init__.py
@@ -0,0 +1 @@
+from .harmonic_balancer import EnhancedHarmonicBalancer
\ No newline at end of file
diff --git a/src/circuit.py b/src/circuit.py
new file mode 100644
index 0000000..9218e16
--- /dev/null
+++ b/src/circuit.py
@@ -0,0 +1,73 @@
+
+import numpy as np
+from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
+
+class QuantumResonanceCircuit:
+ def __init__(self, resonance_freq=4.40e9, coupling_strength=0.1):
+ self.resonance_freq = resonance_freq
+ self.coupling_strength = coupling_strength
+ self.num_qubits = 4
+
+ def initialize_state(self):
+ """Initialize the quantum state"""
+ return np.array([1.0] + [0.0] * (2**self.num_qubits - 1), dtype=complex)
+
+ def get_hamiltonian(self):
+ """Calculate the Hamiltonian of the system"""
+ dim = 2**self.num_qubits
+ H = np.zeros((dim, dim), dtype=complex)
+ # Add resonant coupling terms
+ for i in range(self.num_qubits-1):
+ H[i,i+1] = self.coupling_strength
+ H[i+1,i] = self.coupling_strength
+ # Add energy terms
+ for i in range(dim):
+ H[i,i] = self.resonance_freq * bin(i).count('1')
+ return H
+
+ def evolve_state(self, state, time):
+ """Evolve the quantum state over time"""
+ H = self.get_hamiltonian()
+ U = np.exp(-1j * H * time)
+ return U @ state
+
+ def calculate_resonance_function(self, x, y):
+ """
+ Calculate the resonance function f(x,y) for a pair of qubits
+ """
+ return np.exp(-((x - y)**2) / (2 * self.coupling_strength))
+
+ def calculate_evolutionary_potential(self, x, y):
+ """
+ Calculate the evolutionary potential P(x,y) for a pair of qubits
+ """
+ resonance = self.calculate_resonance_function(x, y)
+ return resonance * np.exp(-1j * self.resonance_freq * (x + y))
+
+ def get_total_possibilities(self):
+ """
+ Calculate the total number of possibilities using the combined formula:
+ T = ∑(i=1 to n)∑(j=i+1 to n) f(x_i, y_j) · P(x_i, y_j)
+ """
+ total = 0
+ for i in range(self.num_qubits):
+ for j in range(i + 1, self.num_qubits):
+ f_xy = self.calculate_resonance_function(i, j)
+ p_xy = self.calculate_evolutionary_potential(i, j)
+ total += f_xy * np.abs(p_xy)
+ return total
+
+ def create_entangled_circuit(self):
+ """
+ Create a quantum circuit with entangled pairs
+ """
+ qr = QuantumRegister(self.num_qubits, 'q')
+ cr = ClassicalRegister(self.num_qubits, 'c')
+ qc = QuantumCircuit(qr, cr)
+
+ # Create entangled pairs
+ for i in range(0, self.num_qubits - 1, 2):
+ qc.h(qr[i])
+ qc.cx(qr[i], qr[i+1])
+
+ return qc
diff --git a/src/harmonic_balancer.py b/src/harmonic_balancer.py
index 2ee19a8..b04f4e5 100644
--- a/src/harmonic_balancer.py
+++ b/src/harmonic_balancer.py
@@ -1,165 +1,193 @@
import numpy as np
-from scipy.optimize import minimize
-from typing import Dict, List, Tuple, Optional
import logging
+from .circuit import QuantumResonanceCircuit
+from .utils.utils import generate_harmony_vector
+# from .utils.helpers import plot_convergence
+from .system import System
+from scipy.signal import find_peaks, butter, filtfilt, iirnotch
+from scipy.optimize import minimize
class EnhancedHarmonicBalancer:
- """
- Advanced harmonic balancing system for power and vibration applications.
-
- This class implements an enhanced version of the harmonic balancer that uses
- adaptive frequency detection, optimization-based Psi adjustment, and
- application-specific processing for power systems and mechanical vibrations.
-
- Attributes:
- base_frequency (float): The fundamental frequency of the system
- num_harmonics (int): Number of harmonics to consider
- application (str): Type of application ('power' or 'vibration')
- psi (np.ndarray): Phase adjustment values for each harmonic
- frequencies (np.ndarray): Array of harmonic frequencies
- history (dict): Historical performance metrics
-
- Example:
- >>> balancer = EnhancedHarmonicBalancer(60, num_harmonics=5, application='power')
- >>> balanced_signal = balancer.balance_signal(input_signal, sample_rate)
- """
-
- def __init__(self, base_frequency: float, num_harmonics: int = 5,
- application: str = 'power') -> None:
- """
- Initialize the harmonic balancer.
-
- Args:
- base_frequency: Fundamental frequency of the system
- num_harmonics: Number of harmonics to consider
- application: Type of application ('power' or 'vibration')
- """
+ def __init__(self, base_frequency: float, num_harmonics: int = 5, application: str = 'power'):
self.base_frequency = base_frequency
self.num_harmonics = num_harmonics
+ self.application = application
self.golden_ratio = (1 + np.sqrt(5)) / 2
self.psi = np.random.uniform(0, 2*np.pi, num_harmonics)
self.frequencies = np.array([base_frequency * (i + 1) for i in range(num_harmonics)])
- self.application = application
- self.learning_rate = 0.01
- self.history = {'thd': [], 'psi': [], 'frequency_drift': []}
-
+
# Setup logging
logging.basicConfig(level=logging.INFO)
self.logger = logging.getLogger(__name__)
-
- def detect_base_frequency(self, signal_data: np.ndarray,
- sample_rate: float) -> float:
- """
- Detect the fundamental frequency in the signal.
-
- Uses FFT-based analysis to identify the dominant frequency component
- and updates the internal frequency tracking if drift is detected.
-
- Args:
- signal_data: Input time series data
- sample_rate: Sampling rate of the signal
-
- Returns:
- float: Detected fundamental frequency
- """
+
+ # Initialize quantum circuit
+ self.quantum_circuit = QuantumResonanceCircuit(num_harmonics)
+
+ # Initialize history
+ self.history = {'scores': [], 'states': []}
+
+ # Set convergence threshold
+ self.convergence_threshold = 1e-6
+
+ # Initialize other attributes
+ self.best_score = float('-inf')
+ self.best_solution = None
+ self.harmony_memory = []
+ self.harmony_memory_size = 20
+ self.max_iterations = 100
+ self.num_qubits = num_harmonics # Assuming num_qubits is equal to num_harmonics
+ def check_convergence(self):
+ # Check if the algorithm has converged
+ if len(self.history['scores']) < 2:
+ return False
+ return abs(self.history['scores'][-1] - self.history['scores'][-2]) < self.convergence_threshold
+
+ def generate_new_harmony(self, transition_constant):
+ # Generate a new harmony vector based on the transition constant and quantum circuit
+ base_harmony = generate_harmony_vector(self.num_qubits)
+ quantum_state = self.quantum_circuit.initialize_state()
+ evolved_state = self.quantum_circuit.evolve_state(quantum_state, transition_constant)
+ quantum_influence = np.abs(evolved_state)**2
+ return np.where(np.random.rand(self.num_qubits) < quantum_influence[:self.num_qubits], 1, base_harmony)
+
+ def update_harmony_memory(self, new_vector, evolved_state, score):
+ # Update the harmony memory with the new vector and score
+ if score > self.best_score:
+ self.best_score = score
+ self.best_solution = new_vector
+ self.harmony_memory.append(new_vector)
+ if len(self.harmony_memory) > self.harmony_memory_size:
+ self.harmony_memory.pop(0)
+
+ def run_experiment(self):
+ for iteration in range(self.max_iterations):
+ new_harmony_vector = self.generate_new_harmony(transition_constant=0.1)
+ evolved_state = self.quantum_circuit.evolve_state(new_harmony_vector, time=0.1)
+ score = self.objective_function(evolved_state)
+ self.update_harmony_memory(new_harmony_vector, evolved_state, score)
+ self.history['scores'].append(score)
+ self.history['states'].append(evolved_state)
+ if self.check_convergence():
+ break
+ return self.best_solution, self.best_score
+
+ def apply_quantum_resonance(self):
+ total_possibilities = self.quantum_circuit.get_total_possibilities()
+ return total_possibilities
+
+ def resonance_condition(self, F0: float, k: float, m: float, omega: float, b: float) -> float:
+ """Calculate amplitude at resonance condition."""
+ return F0 / np.sqrt((k - m * omega**2)**2 + (b * omega)**2)
+
+ def wave_interference(self, y1: np.ndarray, y2: np.ndarray) -> np.ndarray:
+ """Calculate wave interference between two signals."""
+ return y1 + y2
+
+ def golden_harmony(self, R: float, F: float, E: float) -> float:
+ """Calculate golden harmony metric."""
+ return np.sqrt((R * F**2) + E**2)
+
+ def detect_base_frequency(self, signal_data: np.ndarray, sample_rate: float) -> float:
spectrum = np.abs(np.fft.fft(signal_data))
freqs = np.fft.fftfreq(len(signal_data), 1/sample_rate)
- positive_freqs = freqs[:len(freqs)//2]
positive_spectrum = spectrum[:len(spectrum)//2]
-
- main_freq_idx = np.argmax(positive_spectrum)
- detected_freq = np.abs(positive_freqs[main_freq_idx])
-
- if np.abs(detected_freq - self.base_frequency) > 0.5:
- self.logger.info(f"Frequency drift detected: {detected_freq - self.base_frequency:.2f} Hz")
- self.base_frequency = detected_freq
- self.frequencies = np.array([detected_freq * (i + 1) for i in range(self.num_harmonics)])
-
- return detected_freq
-
- def optimize_psi(self, signal_data: np.ndarray,
- sample_rate: float) -> float:
- """
- Optimize Psi values to minimize Total Harmonic Distortion.
-
- Uses Nelder-Mead optimization to find optimal phase adjustments.
-
- Args:
- signal_data: Input time series data
- sample_rate: Sampling rate of the signal
-
- Returns:
- float: Final THD value after optimization
- """
- def objective(psi_values):
- self.psi = psi_values
- balanced = self.balance_signal(signal_data, sample_rate)
- return self.calculate_thd(balanced, sample_rate)
-
- result = minimize(objective, self.psi, method='Nelder-Mead')
+ positive_freqs = freqs[:len(freqs)//2]
+
+ peaks, _ = find_peaks(positive_spectrum, height=max(positive_spectrum)/10)
+
+ if len(peaks) > 0:
+ sorted_peaks = sorted(peaks, key=lambda x: positive_spectrum[x], reverse=True)
+ for peak in sorted_peaks[:3]:
+ detected_freq = positive_freqs[peak]
+ if 0.8 * self.base_frequency <= detected_freq <= 1.2 * self.base_frequency:
+ if abs(detected_freq - self.base_frequency) > 0.1:
+ self.base_frequency = detected_freq
+ self.frequencies = np.array([self.base_frequency * (i + 1) for i in range(self.num_harmonics)])
+ return detected_freq
+
+ return self.base_frequency
+
+ def optimize_psi(self, signal_data: np.ndarray, sample_rate: float) -> float:
+ def objective(psi):
+ balanced = self.apply_psi(signal_data, psi, sample_rate)
+ thd = self.calculate_thd(balanced, sample_rate)
+ harmony = self.golden_harmony(thd, self.base_frequency, np.mean(np.abs(balanced)))
+ return abs(harmony - self.golden_ratio)
+
+ result = minimize(objective, self.psi, method='BFGS')
self.psi = result.x
return result.fun
-
- def calculate_thd(self, signal_data: np.ndarray,
- sample_rate: float) -> float:
- """
- Calculate Total Harmonic Distortion of the signal.
-
- Args:
- signal_data: Input time series data
- sample_rate: Sampling rate of the signal
-
- Returns:
- float: THD value
- """
+
+ def apply_psi(self, signal_data: np.ndarray, psi: np.ndarray, sample_rate: float) -> np.ndarray:
+ t = np.arange(len(signal_data)) / sample_rate
+ correction = np.zeros_like(signal_data)
+ for i, freq in enumerate(self.frequencies):
+ correction += self.resonance_condition(1, 1, 1, 2*np.pi*freq, 0.1) * np.sin(2 * np.pi * freq * t + psi[i])
+ return self.wave_interference(signal_data, -correction)
+
+ def calculate_thd(self, signal_data: np.ndarray, sample_rate: float) -> float:
spectrum = np.abs(np.fft.fft(signal_data))
freqs = np.fft.fftfreq(len(signal_data), 1/sample_rate)
-
fundamental_idx = np.argmax(spectrum[:len(spectrum)//2])
- harmonics = spectrum[fundamental_idx*2:fundamental_idx*5]
-
- thd = np.sqrt(np.sum(harmonics**2)) / spectrum[fundamental_idx]
- return thd
-
- def balance_signal(self, signal_data: np.ndarray,
- sample_rate: float) -> np.ndarray:
- """
- Apply harmonic balancing to the input signal.
-
- Implements application-specific processing for power systems
- and mechanical vibrations.
-
- Args:
- signal_data: Input time series data
- sample_rate: Sampling rate of the signal
-
- Returns:
- np.ndarray: Balanced signal
- """
+ harmonics = spectrum[fundamental_idx*2:fundamental_idx*(self.num_harmonics+1)]
+ return np.sqrt(np.sum(harmonics**2)) / spectrum[fundamental_idx]
+
+ def balance_signal(self, signal_data: np.ndarray, sample_rate: float) -> np.ndarray:
detected_freq = self.detect_base_frequency(signal_data, sample_rate)
-
- freq_domain = np.fft.fft(signal_data)
- freqs = np.fft.fftfreq(len(signal_data), 1/sample_rate)
-
+
+ # Update base_frequency if the detected frequency is significantly different
+ if abs(detected_freq - self.base_frequency) > 0.1: # You can adjust this threshold
+ self.base_frequency = detected_freq
+ self.frequencies = np.array([self.base_frequency * (i + 1) for i in range(self.num_harmonics)])
+ self.logger.info(f"Base frequency updated to {self.base_frequency} Hz")
+
+ self.optimize_psi(signal_data, sample_rate)
+ balanced = self.apply_psi(signal_data, self.psi, sample_rate)
+
+ # Apply application-specific processing
if self.application == 'power':
- # Focus on odd harmonics for power systems
- for i, freq in enumerate(self.frequencies):
- if i % 2 == 0: # Odd harmonics
- mask = (np.abs(freqs) >= freq-1) & (np.abs(freqs) <= freq+1)
- freq_domain[mask] *= np.exp(1j * self.psi[i])
-
+ balanced = self.power_specific_processing(balanced, sample_rate)
elif self.application == 'vibration':
- # Consider all harmonics with progressive damping
- for i, freq in enumerate(self.frequencies):
- mask = (np.abs(freqs) >= freq-2) & (np.abs(freqs) <= freq+2)
- damping = 1 / (i + 1)
- freq_domain[mask] *= np.exp(1j * self.psi[i]) * damping
-
- balanced = np.real(np.fft.ifft(freq_domain))
-
- # Update history
- self.history['thd'].append(self.calculate_thd(balanced, sample_rate))
- self.history['psi'].append(self.psi.copy())
- self.history['frequency_drift'].append(detected_freq - self.base_frequency)
-
+ balanced = self.vibration_specific_processing(balanced, sample_rate)
+
return balanced
+
+ def power_specific_processing(self, signal_data: np.ndarray, sample_rate: float) -> np.ndarray:
+ # Apply quantum entanglement simulation
+ entanglement_effect = self.quantum_entanglement_simulation(self.num_harmonics)
+ # Apply a series of notch filters to remove specific harmonics
+ for harmonic in range(2, self.num_harmonics + 1):
+ notch_freq = harmonic * self.base_frequency
+ q = 30.0 # Quality factor
+ w0 = notch_freq / (sample_rate / 2)
+ b, a = iirnotch(w0, q)
+ signal_data = filtfilt(b, a, signal_data)
+
+ # Apply quantum influence
+ quantum_influence = self.apply_quantum_resonance()
+ signal_data *= (1 + 0.1 * quantum_influence) # Adjust the scaling factor as needed
+
+ return signal_data
+
+
+ def vibration_specific_processing(self, signal_data: np.ndarray, sample_rate: float) -> np.ndarray:
+ # Implement a simple low-pass filter to reduce high-frequency components
+ cutoff_freq = 2 * self.base_frequency # Adjust as needed
+ nyquist = 0.5 * sample_rate
+ normal_cutoff = cutoff_freq / nyquist
+ b, a = butter(4, normal_cutoff, btype='low', analog=False)
+ return filtfilt(b, a, signal_data)
+
+ def quantum_entanglement_simulation(self, num_harmonics):
+ # Implement a simple quantum entanglement simulation
+ # This is a placeholder implementation and should be replaced with actual quantum simulation logic
+ return np.random.rand(num_harmonics)
+
+ def mri_harmonic_suppression(self, signal_data: np.ndarray, sample_rate: float) -> np.ndarray:
+ """Suppress specific harmonics for MRI application."""
+ for harmonic in [3, 5, 7]: # Suppress 3rd, 5th, and 7th harmonics
+ notch_freq = harmonic * self.base_frequency
+ w0 = notch_freq / (sample_rate / 2)
+ b, a = iirnotch(w0, 30)
+ signal_data = filtfilt(b, a, signal_data)
+ return signal_data
diff --git a/src/system.py b/src/system.py
new file mode 100644
index 0000000..80ed1b7
--- /dev/null
+++ b/src/system.py
@@ -0,0 +1,55 @@
+import numpy as np
+
+class System:
+ def __init__(self, num_qubits):
+ self.num_qubits = num_qubits
+ self.parameters = np.zeros(num_qubits)
+ self.state = np.zeros((num_qubits, num_qubits))
+ self.initialize_circuit()
+
+ def initialize_circuit(self):
+ # Initialize the hybrid graphene-silicon-diamond quantum circuit
+ self.graphene_layer = np.random.rand(self.num_qubits)
+ self.silicon_interface = np.random.rand(self.num_qubits, self.num_qubits)
+ self.diamond_layer = np.random.rand(self.num_qubits)
+
+ def evolve_state(self, state, steps=1):
+ if state.shape[0] != self.num_qubits:
+ raise ValueError("Invalid state vector shape")
+ evolved_state = state
+ for _ in range(steps):
+ evolved_state = self.apply_quantum_operations(evolved_state)
+ return evolved_state / np.linalg.norm(evolved_state)
+
+ def apply_quantum_operations(self, state):
+ # Apply quantum operations based on the hybrid circuit
+ state = np.dot(self.silicon_interface, state)
+ state = state * self.graphene_layer
+ state = state + self.diamond_layer
+ return state
+
+ def update_parameters(self, state, score, transition_constant):
+ self.parameters += transition_constant * score * state
+
+ def get_parameters(self):
+ """
+ Get the current parameters of the quantum system.
+
+ Returns:
+ np.ndarray: The current parameters.
+ """
+ return self.parameters
+
+ def reset_parameters(self):
+ """
+ Reset the parameters of the quantum system to zero.
+ """
+ self.parameters = np.zeros(self.num_qubits)
+
+ def encode_dna_sequence(self, sequence):
+ # Encode a DNA sequence into a quantum state
+ dna_mapping = {'A': 0, 'T': 1, 'C': 2, 'G': 3}
+ encoded_state = np.zeros(self.num_qubits)
+ for i, base in enumerate(sequence):
+ encoded_state[i % self.num_qubits] += dna_mapping[base]
+ return encoded_state / np.linalg.norm(encoded_state)
\ No newline at end of file
diff --git a/src/utils/helpers.py b/src/utils/helpers.py
new file mode 100644
index 0000000..2d94c10
--- /dev/null
+++ b/src/utils/helpers.py
@@ -0,0 +1,34 @@
+import numpy as np # type: ignore
+
+def phi_pi_transition():
+ # Implement the phi-pi transition logic
+ return state * transition_constant # type: ignore
+ pass
+
+def generate_harmony_vector(num_qubits):
+ return np.random.rand(num_qubits)
+
+def state_to_dna(state):
+ # Convert state to DNA sequence
+ return ''.join(['A' if x < 0.25 else 'C' if x < 0.5 else 'G' if x < 0.75 else 'T' for x in state])
+ pass
+
+def count_valid_codons(dna_sequence):
+ # Count valid codons in DNA sequence
+ return sum(1 for i in range(0, len(dna_sequence), 3) if dna_sequence[i:i+3] in ['ATG', 'TAA', 'TAG', 'TGA'])
+ pass
+
+def calculate_gc_content(dna_sequence):
+ # Calculate GC content of DNA sequence
+ return (dna_sequence.count('G') + dna_sequence.count('C')) / len(dna_sequence)
+ pass
+
+def calculate_base_balance(dna_sequence):
+ # Calculate base balance of DNA sequence
+ return {
+ 'A': dna_sequence.count('A'),
+ 'C': dna_sequence.count('C'),
+ 'G': dna_sequence.count('G'),
+ 'T': dna_sequence.count('T')
+ }
+ pass
\ No newline at end of file
diff --git a/src/utils/utils.py b/src/utils/utils.py
new file mode 100644
index 0000000..b2218b1
--- /dev/null
+++ b/src/utils/utils.py
@@ -0,0 +1,37 @@
+import math
+import numpy as np # type: ignore
+
+BASE_PAIRS = ['A', 'T', 'G', 'C']
+START_CODON = 'ATG'
+STOP_CODONS = ['TAA', 'TAG', 'TGA']
+
+PHI = (1 + math.sqrt(5)) / 2 # Golden ratio
+
+def phi_pi_transition(state, transition_constant):
+ # Example implementation of phi_pi_transition
+ return state * transition_constant
+
+def generate_harmony_vector(size):
+ # Example implementation of generating a harmony vector
+ return np.random.rand(size)
+
+def state_to_dna(state):
+ # Example implementation of converting state to DNA sequence
+ return ''.join(['A' if x < 0.25 else 'C' if x < 0.5 else 'G' if x < 0.75 else 'T' for x in state])
+
+def count_valid_codons(dna_sequence):
+ # Example implementation of counting valid codons
+ return sum(1 for i in range(0, len(dna_sequence), 3) if dna_sequence[i:i+3] in ['ATG', 'TAA', 'TAG', 'TGA'])
+
+def calculate_gc_content(dna_sequence):
+ # Example implementation of calculating GC content
+ return (dna_sequence.count('G') + dna_sequence.count('C')) / len(dna_sequence)
+
+def calculate_base_balance(dna_sequence):
+ # Example implementation of calculating base balance
+ return {
+ 'A': dna_sequence.count('A'),
+ 'C': dna_sequence.count('C'),
+ 'G': dna_sequence.count('G'),
+ 'T': dna_sequence.count('T')
+ }
\ No newline at end of file
diff --git a/tests/test_harmonic_balancer.py b/tests/test_harmonic_balancer.py
new file mode 100644
index 0000000..c489adb
--- /dev/null
+++ b/tests/test_harmonic_balancer.py
@@ -0,0 +1,67 @@
+import unittest
+import numpy as np
+from src.harmonic_balancer import EnhancedHarmonicBalancer
+
+class TestEnhancedHarmonicBalancer(unittest.TestCase):
+
+ def setUp(self):
+ self.balancer = EnhancedHarmonicBalancer(base_frequency=60, num_harmonics=5, application='power')
+
+ def test_initialization(self):
+ self.assertEqual(self.balancer.base_frequency, 60)
+ self.assertEqual(self.balancer.num_harmonics, 5)
+ self.assertEqual(self.balancer.application, 'power')
+ self.assertEqual(len(self.balancer.psi), 5)
+
+ def test_detect_base_frequency(self):
+ t = np.linspace(0, 1, 1000)
+ signal = np.sin(2 * np.pi * 60 * t)
+ detected_freq = self.balancer.detect_base_frequency(signal, sample_rate=1000)
+ self.assertAlmostEqual(detected_freq, 60, delta=1)
+
+ def test_calculate_thd(self):
+ t = np.linspace(0, 1, 1000)
+ signal = np.sin(2 * np.pi * 60 * t) + 0.1 * np.sin(2 * np.pi * 120 * t)
+ thd = self.balancer.calculate_thd(signal, sample_rate=1000)
+ self.assertGreater(thd, 0)
+ self.assertLess(thd, 1)
+
+ def test_balance_signal(self):
+ t = np.linspace(0, 1, 1000)
+ signal = np.sin(2 * np.pi * 60 * t) + 0.5 * np.sin(2 * np.pi * 120 * t)
+ balanced = self.balancer.balance_signal(signal, sample_rate=1000)
+ self.assertEqual(len(balanced), len(signal))
+ self.assertNotEqual(np.sum(np.abs(balanced - signal)), 0)
+
+ def test_power_specific_processing(self):
+ t = np.linspace(0, 1, 1000)
+ signal = np.sin(2 * np.pi * 60 * t) + 0.5 * np.sin(2 * np.pi * 180 * t)
+ processed = self.balancer.power_specific_processing(signal, sample_rate=1000)
+ self.assertEqual(len(processed), len(signal))
+
+ # Test if harmonics are reduced
+ fft_original = np.fft.fft(signal)
+ fft_processed = np.fft.fft(processed)
+ self.assertLess(np.abs(fft_processed[180]), np.abs(fft_original[180]))
+
+ def test_combined_approach(self):
+ t = np.linspace(0, 1, 1000)
+ signal = np.sin(2 * np.pi * 60 * t) + 0.5 * np.sin(2 * np.pi * 120 * t) + 0.3 * np.sin(2 * np.pi * 180 * t)
+ processed = self.balancer.power_specific_processing(signal, sample_rate=1000)
+
+ # Check if the signal is changed
+ self.assertFalse(np.array_equal(signal, processed))
+
+ # Check if harmonics are reduced
+ fft_original = np.fft.fft(signal)
+ fft_processed = np.fft.fft(processed)
+ self.assertLess(np.abs(fft_processed[120]), np.abs(fft_original[120]))
+ self.assertLess(np.abs(fft_processed[180]), np.abs(fft_original[180]))
+
+ # Check if THD is improved
+ thd_original = self.balancer.calculate_thd(signal, 1000)
+ thd_processed = self.balancer.calculate_thd(processed, 1000)
+ self.assertLess(thd_processed, thd_original)
+
+if __name__ == '__main__':
+ unittest.main()
diff --git a/tests/test_integration_harmonic_balancer.py b/tests/test_integration_harmonic_balancer.py
new file mode 100644
index 0000000..5efb908
--- /dev/null
+++ b/tests/test_integration_harmonic_balancer.py
@@ -0,0 +1,126 @@
+import unittest
+import numpy as np
+from src.harmonic_balancer import EnhancedHarmonicBalancer
+import time
+
+class TestEnhancedHarmonicBalancerIntegration(unittest.TestCase):
+
+ def setUp(self):
+ self.balancer = EnhancedHarmonicBalancer(base_frequency=60, num_harmonics=5, application='power')
+
+ def generate_signal(self, duration, sample_rate, base_freq, harmonics):
+ t = np.linspace(0, duration, int(duration * sample_rate))
+ signal = np.zeros_like(t)
+ for i, amplitude in enumerate(harmonics):
+ signal += amplitude * np.sin(2 * np.pi * base_freq * (i + 1) * t)
+ return signal
+
+ def test_complex_signal_balancing(self):
+ # Generate a complex signal with multiple harmonics
+ signal = self.generate_signal(duration=1, sample_rate=1000, base_freq=60,
+ harmonics=[1, 0.5, 0.3, 0.2, 0.1])
+
+ balanced = self.balancer.balance_signal(signal, sample_rate=1000)
+
+ # Check if THD is improved
+ original_thd = self.balancer.calculate_thd(signal, 1000)
+ balanced_thd = self.balancer.calculate_thd(balanced, 1000)
+ self.assertLess(balanced_thd, original_thd)
+
+ def test_frequency_drift_adaptation(self):
+ # Generate a signal with drifting frequency
+ t = np.linspace(0, 1, 1000)
+ drifting_freq = 60 + 2 * np.sin(2 * np.pi * 0.5 * t) # Frequency drifts between 58 and 62 Hz
+ signal = np.sin(2 * np.pi * drifting_freq * t)
+
+ initial_frequency = self.balancer.base_frequency
+ balanced = self.balancer.balance_signal(signal, sample_rate=1000)
+
+ # Check if the balancer detected any frequency change
+ self.assertNotEqual(self.balancer.base_frequency, initial_frequency)
+ self.assertNotEqual(self.balancer.base_frequency, 60)
+
+ def test_noise_robustness(self):
+ # Generate a signal with added noise
+ signal = self.generate_signal(duration=1, sample_rate=1000, base_freq=60,
+ harmonics=[1, 0.5, 0.3])
+ noise = np.random.normal(0, 0.1, signal.shape)
+ noisy_signal = signal + noise
+
+ balanced = self.balancer.balance_signal(noisy_signal, sample_rate=1000)
+
+ # Check if the balancer still improves THD despite noise
+ original_thd = self.balancer.calculate_thd(noisy_signal, 1000)
+ balanced_thd = self.balancer.calculate_thd(balanced, 1000)
+ self.assertLess(balanced_thd, original_thd)
+
+ def test_performance_scaling(self):
+ durations = [0.1, 1, 10, 100] # Logarithmic scale
+ execution_times = []
+
+ for duration in durations:
+ signal = self.generate_signal(duration=duration, sample_rate=1000, base_freq=60,
+ harmonics=[1, 0.5, 0.3, 0.2, 0.1])
+
+ # Run the balance_signal method multiple times and take the average
+ num_runs = 5
+ total_time = 0
+ for _ in range(num_runs):
+ start_time = time.time()
+ self.balancer.balance_signal(signal, sample_rate=1000)
+ end_time = time.time()
+ total_time += end_time - start_time
+
+ average_time = total_time / num_runs
+ execution_times.append(average_time)
+
+ # Print execution times for debugging
+ for duration, exec_time in zip(durations, execution_times):
+ print(f"Duration: {duration}s, Execution time: {exec_time:.6f}s")
+
+ # Check if there's a general increasing trend
+ # We'll allow for small fluctuations by checking if at least 2 out of 3 transitions show an increase
+ increases = sum(execution_times[i] < execution_times[i+1] for i in range(len(execution_times)-1))
+ self.assertGreaterEqual(increases, 2, "Execution time should generally increase with signal duration")
+
+ # Check if the execution time for the longest duration is significantly larger than for the shortest
+ self.assertGreater(execution_times[-1], execution_times[0] * 1.5,
+ "Execution time for the longest duration should be at least 1.5 times that of the shortest duration")
+
+ def test_edge_case_very_low_frequency(self):
+ signal = self.generate_signal(duration=10, sample_rate=1000, base_freq=1,
+ harmonics=[1, 0.5, 0.3])
+
+ balanced = self.balancer.balance_signal(signal, sample_rate=1000)
+
+ # Check if the balancer can handle very low frequencies
+ self.assertIsNotNone(balanced)
+ self.assertEqual(len(balanced), len(signal))
+
+ def test_edge_case_very_high_frequency(self):
+ signal = self.generate_signal(duration=0.1, sample_rate=100000, base_freq=10000,
+ harmonics=[1, 0.5, 0.3])
+
+ balanced = self.balancer.balance_signal(signal, sample_rate=100000)
+
+ # Check if the balancer can handle very high frequencies
+ self.assertIsNotNone(balanced)
+ self.assertEqual(len(balanced), len(signal))
+
+ def test_application_specific_processing(self):
+ signal = self.generate_signal(duration=1, sample_rate=1000, base_freq=60,
+ harmonics=[1, 0, 0.3, 0, 0.1]) # Only odd harmonics for power systems
+
+ # Test power application
+ self.balancer.application = 'power'
+ power_balanced = self.balancer.balance_signal(signal, sample_rate=1000)
+
+ # Test vibration application
+ self.balancer = EnhancedHarmonicBalancer(base_frequency=60, num_harmonics=5, application='vibration')
+ vibration_balanced = self.balancer.balance_signal(signal, sample_rate=1000)
+
+ # Check if the results are different for different applications
+ self.assertFalse(np.array_equal(power_balanced, vibration_balanced))
+
+if __name__ == '__main__':
+ unittest.main()
\ No newline at end of file