diff --git a/ailibrary_framework.py b/ailibrary_framework.py deleted file mode 100644 index adbee05..0000000 --- a/ailibrary_framework.py +++ /dev/null @@ -1,104 +0,0 @@ - -import torch -from drl_upn_networks import DRLNetwork, UPNNetwork -from archetype_blender import ArchetypeBlender -from user_neural_pattern import UserNeuralPattern -from deep_resonance_learning import DeepResonanceLearning - -class AILibrary: - def __init__(self, input_dim=128, pattern_dim=64, num_archetypes=3): - self.input_dim = input_dim - self.pattern_dim = pattern_dim - - # Initialize all components - self.drl_network = DRLNetwork(input_dim, pattern_dim * 2, pattern_dim) - self.upn_network = UPNNetwork(input_dim, pattern_dim) - self.archetype_blender = ArchetypeBlender(num_archetypes, pattern_dim) - self.user_pattern = UserNeuralPattern(input_dim, pattern_dim) - self.deep_resonance = DeepResonanceLearning(input_dim, pattern_dim) - - # Initialize training state - self.is_training = False - self.training_history = [] - - def process_user_input(self, user_input): - """ - Process user input through the entire AI pipeline - - Args: - user_input (torch.Tensor): Input tensor of shape (input_dim,) - - Returns: - dict: Contains processed patterns and resonance outputs - """ - # Generate user neural pattern - user_pattern = self.user_pattern(user_input) - - # Get resonance pattern - resonance = self.deep_resonance(user_input) - - # Process through DRL network - drl_output = self.drl_network(user_input, resonance) - - # Generate UPN pattern - upn_pattern = self.upn_network.generate_pattern(user_input) - - # Blend archetypes based on patterns - archetype_blend = self.archetype_blender.get_harmonic_blend(drl_output) - - return { - "user_pattern": user_pattern, - "resonance": resonance, - "drl_output": drl_output, - "upn_pattern": upn_pattern, - "archetype_blend": archetype_blend - } - - def train_step(self, input_batch, target_batch): - """ - Perform a single training step - - Args: - input_batch (torch.Tensor): Batch of input data - target_batch (torch.Tensor): Batch of target data - """ - self.is_training = True - # Implementation of training logic here - results = self.process_user_input(input_batch) - self.training_history.append({ - "input": input_batch, - "target": target_batch, - "results": results - }) - self.is_training = False - return results - - def save_state(self, path): - """Save the current state of all components""" - state = { - "drl_network": self.drl_network.state_dict(), - "upn_network": self.upn_network.state_dict(), - "user_pattern": self.user_pattern.state_dict(), - "deep_resonance": self.deep_resonance.state_dict(), - "training_history": self.training_history - } - torch.save(state, path) - - def load_state(self, path): - """Load a previously saved state""" - state = torch.load(path) - self.drl_network.load_state_dict(state["drl_network"]) - self.upn_network.load_state_dict(state["upn_network"]) - self.user_pattern.load_state_dict(state["user_pattern"]) - self.deep_resonance.load_state_dict(state["deep_resonance"]) - self.training_history = state["training_history"] - -# Example test function -def test_ailibrary(): - """ - Test the AILibrary framework with sample data - """ - ai_lib = AILibrary() - sample_input = torch.randn(128) # Create sample input - results = ai_lib.process_user_input(sample_input) - return results diff --git a/archetype_blender.py b/archetype_blender.py deleted file mode 100644 index 47b5fe1..0000000 --- a/archetype_blender.py +++ /dev/null @@ -1,48 +0,0 @@ - -import torch -import torch.nn as nn -import numpy as np - -class ArchetypeBlender: - def __init__(self, num_archetypes, feature_dim): - self.num_archetypes = num_archetypes - self.feature_dim = feature_dim - self.archetypes = {} - self.blending_network = nn.Sequential( - nn.Linear(num_archetypes * feature_dim, feature_dim * 2), - nn.ReLU(), - nn.Linear(feature_dim * 2, feature_dim), - nn.Sigmoid() - ) - - def add_archetype(self, name, features): - """Add a new archetype with its characteristic features""" - if len(features) != self.feature_dim: - raise ValueError(f"Features must have dimension {self.feature_dim}") - self.archetypes[name] = torch.tensor(features, dtype=torch.float32) - - def blend_archetypes(self, weights): - """Blend multiple archetypes based on weights""" - if len(weights) != len(self.archetypes): - raise ValueError("Weights must match number of archetypes") - - combined_features = [] - for name, w in zip(self.archetypes.keys(), weights): - combined_features.append(self.archetypes[name] * w) - - combined = torch.cat(combined_features) - return self.blending_network(combined) - - def get_harmonic_blend(self, context): - """Generate context-aware archetype blend""" - weights = torch.softmax(torch.randn(len(self.archetypes)), dim=0) - return self.blend_archetypes(weights) - -# Example usage -feature_dim = 64 -blender = ArchetypeBlender(num_archetypes=3, feature_dim=feature_dim) - -# Add some example archetypes -blender.add_archetype("wisdom", torch.randn(feature_dim)) -blender.add_archetype("nurture", torch.randn(feature_dim)) -blender.add_archetype("guidance", torch.randn(feature_dim)) diff --git a/deep_resonance_learning.py b/deep_resonance_learning.py deleted file mode 100644 index 4367758..0000000 --- a/deep_resonance_learning.py +++ /dev/null @@ -1,71 +0,0 @@ - -import torch -import torch.nn as nn -import torch.nn.functional as F - -class DeepResonanceLearning(nn.Module): - def __init__(self, input_dim, resonance_dim, num_layers=3): - super(DeepResonanceLearning, self).__init__() - self.resonance_dim = resonance_dim - - # Resonance layers - self.layers = nn.ModuleList([ - nn.Linear(input_dim if i == 0 else resonance_dim, resonance_dim) - for i in range(num_layers) - ]) - - # Harmonic attention mechanism - self.harmonic_attention = nn.MultiheadAttention( - embed_dim=resonance_dim, - num_heads=4, - dropout=0.1 - ) - - # Resonance memory - self.memory = {} - - def resonance_forward(self, x): - """Process input through resonance layers""" - for layer in self.layers: - x = F.relu(layer(x)) - # Add harmonic oscillation - x = x + 0.1 * torch.sin(x * 3.14159) - return x - - def apply_harmonic_attention(self, x): - """Apply harmonic attention mechanism""" - # Reshape for attention - x = x.unsqueeze(0) - attn_output, _ = self.harmonic_attention(x, x, x) - return attn_output.squeeze(0) - - def forward(self, x, store_resonance=False): - # Generate resonance pattern - resonance = self.resonance_forward(x) - - # Apply harmonic attention - resonance = self.apply_harmonic_attention(resonance) - - if store_resonance: - self.store_resonance_pattern(x, resonance) - - return resonance - - def store_resonance_pattern(self, input_pattern, resonance): - """Store resonance pattern for future reference""" - pattern_id = hash(tuple(input_pattern.detach().numpy())) - self.memory[pattern_id] = resonance.detach() - - def get_resonance_pattern(self, input_pattern): - """Retrieve stored resonance pattern""" - pattern_id = hash(tuple(input_pattern.detach().numpy())) - return self.memory.get(pattern_id) - -# Example usage -input_dim = 128 -resonance_dim = 64 -drl = DeepResonanceLearning(input_dim, resonance_dim) - -# Process input and generate resonance -input_data = torch.randn(input_dim) -resonance_pattern = drl(input_data, store_resonance=True) diff --git a/drl_upn_networks.py b/drl_upn_networks.py deleted file mode 100644 index 39b01c2..0000000 --- a/drl_upn_networks.py +++ /dev/null @@ -1,41 +0,0 @@ - -import torch -import torch.nn as nn - -class DRLNetwork(nn.Module): - def __init__(self, input_size, hidden_size, output_size): - super(DRLNetwork, self).__init__() - self.resonance_layer = nn.Sequential( - nn.Linear(input_size, hidden_size), - nn.ReLU(), - nn.Dropout(0.2), - nn.Linear(hidden_size, hidden_size // 2), - nn.ReLU(), - nn.Linear(hidden_size // 2, output_size) - ) - self.pattern_memory = {} - - def forward(self, x, resonance_pattern=None): - if resonance_pattern is not None: - x = x * resonance_pattern - return self.resonance_layer(x) - - def store_pattern(self, pattern_id, pattern): - self.pattern_memory[pattern_id] = pattern - -class UPNNetwork(nn.Module): - def __init__(self, input_size, pattern_size): - super(UPNNetwork, self).__init__() - self.pattern_generator = nn.Sequential( - nn.Linear(input_size, pattern_size * 2), - nn.ReLU(), - nn.Linear(pattern_size * 2, pattern_size), - nn.Tanh() - ) - - def forward(self, user_input): - return self.pattern_generator(user_input) - - def generate_pattern(self, user_data): - with torch.no_grad(): - return self.forward(user_data) diff --git a/enhanced_ecosystem_with_psi.py b/enhanced_ecosystem_with_psi.py deleted file mode 100644 index faad17a..0000000 --- a/enhanced_ecosystem_with_psi.py +++ /dev/null @@ -1,31 +0,0 @@ -import numpy as np - -class EnhancedHumanQuantumEcosystem: - def __init__(self, num_groups=5, network_type='small_world', interaction_strength=0.1): - self.num_groups = num_groups - self.growth_rates = np.random.uniform(0.01, 0.05, num_groups) - self.carrying_capacities = np.random.uniform(0.5, 1.0, num_groups) - self.innovation_rates = np.random.uniform(0.001, 0.01, num_groups) - self.adaptation_rates = np.random.uniform(0.01, 0.05, num_groups) - self.interaction_strength = interaction_strength - - # Add Psi and golden ratio - self.psi = np.random.uniform(0, 2*np.pi, num_groups) # Random initial phase for each group - self.golden_ratio = (1 + np.sqrt(5)) / 2 - - def update(self, state, t): - # Existing dynamics - growth = self.growth_rates * state * (1 - state / self.carrying_capacities) - innovation = self.innovation_rates * state - adaptation = self.adaptation_rates * (1 - state) - - # New dynamics incorporating Psi and golden ratio - psi_effect = np.sin(self.psi + t / self.golden_ratio) # Time-dependent phase - balancer_effect = self.interaction_strength * (psi_effect - np.mean(psi_effect)) - - # Update Psi - self.psi += 0.1 * np.random.randn(self.num_groups) # Small random changes in Psi - - # Combine all effects - total_effect = growth + innovation + adaptation + balancer_effect - return total_effect diff --git a/enhanced_ecosystem_with_psi_and_frequency.py b/enhanced_ecosystem_with_psi_and_frequency.py deleted file mode 100644 index b8c1992..0000000 --- a/enhanced_ecosystem_with_psi_and_frequency.py +++ /dev/null @@ -1,33 +0,0 @@ -import numpy as np - -class EnhancedHumanQuantumEcosystem: - def __init__(self, num_groups=5, interaction_strength=0.1, base_frequency=20): - self.num_groups = num_groups - self.growth_rates = np.random.uniform(0.01, 0.05, num_groups) - self.carrying_capacities = np.random.uniform(0.5, 1.0, num_groups) - self.innovation_rates = np.random.uniform(0.001, 0.01, num_groups) - self.adaptation_rates = np.random.uniform(0.01, 0.05, num_groups) - self.interaction_strength = interaction_strength - - # Psi and frequency-related parameters - self.base_frequency = base_frequency # Hz, super low frequency - self.psi = np.random.uniform(0, 2*np.pi, num_groups) # Random initial phase for each group - self.golden_ratio = (1 + np.sqrt(5)) / 2 - - def update(self, state, t): - # Existing dynamics - growth = self.growth_rates * state * (1 - state / self.carrying_capacities) - innovation = self.innovation_rates * state - adaptation = self.adaptation_rates * (1 - state) - - # New dynamics incorporating Psi and frequency - frequency = self.base_frequency * (1 + np.sin(t / self.golden_ratio)) # Time-varying frequency - psi_effect = np.sin(self.psi + 2 * np.pi * frequency * t) # Time-dependent phase - balancer_effect = self.interaction_strength * (psi_effect - np.mean(psi_effect)) - - # Update Psi based on the state of the system - self.psi += 0.1 * np.tanh(state) # State-dependent phase adjustment - - # Combine all effects - total_effect = growth + innovation + adaptation + balancer_effect - return total_effect diff --git a/enhanced_quantum_reactor.py b/enhanced_quantum_reactor.py deleted file mode 100644 index ecbe847..0000000 --- a/enhanced_quantum_reactor.py +++ /dev/null @@ -1,85 +0,0 @@ -import numpy as np -from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, Aer, execute - -class QuantumSystem: - def __init__(self, num_qubits): - self.num_qubits = num_qubits - self.parameters = np.zeros(num_qubits) - - def evolve_state(self, state, steps=1): - if not isinstance(state, np.ndarray) or state.shape != (self.num_qubits,): - raise ValueError(f"Invalid state vector shape. Expected ({self.num_qubits},), got {state.shape}") - for _ in range(steps): - state = state * np.exp(-1j * self.parameters) - return state / np.linalg.norm(state) - - def update_parameters(self, state, score, transition_constant): - normalized_state = np.array(state) / np.linalg.norm(state) - self.parameters += transition_constant * score * normalized_state - - def get_parameters(self): - return self.parameters - - def reset_parameters(self): - self.parameters = np.zeros(self.num_qubits) - -class EnhancedQuantumReactor: - def __init__(self, num_qubits=4, resonance_phase=4.40*np.pi): - self.num_qubits = num_qubits - self.resonance_phase = resonance_phase - self.quantum_system = QuantumSystem(num_qubits) - self.parameters = { - "magnetic_field": 0.0, # Tesla - "containment_pressure": 0.0, # Pascals - "plasma_density": 0.0, # particles/m^3 - "resonance_stability": 0.0 # dimensionless - } - - def create_resonance_circuit(self): - qr = QuantumRegister(self.num_qubits, 'q') - cr = ClassicalRegister(self.num_qubits, 'c') - qc = QuantumCircuit(qr, cr) - - # Initialize with superposition - qc.h(qr[0]) - - # Apply resonance sequence - for i in range(self.num_qubits-1): - qc.cp(self.resonance_phase/self.num_qubits, qr[i], qr[i+1]) - qc.cx(qr[i], qr[i+1]) - - # Add measurement - qc.measure(qr, cr) - return qc - - def calculate_containment_stability(self, measurement_counts): - total_counts = sum(measurement_counts.values()) - max_count = max(measurement_counts.values()) - stability = max_count / total_counts - return stability - - def update_containment_parameters(self, stability): - self.parameters["magnetic_field"] = 5.0 * stability - self.parameters["containment_pressure"] = 1e6 * np.exp(stability) - self.parameters["plasma_density"] = 1e20 * stability - self.parameters["resonance_stability"] = stability - - def run_containment_cycle(self): - qc = self.create_resonance_circuit() - backend = Aer.get_backend('qasm_simulator') - job = execute(qc, backend, shots=1000) - result = job.result() - counts = result.get_counts(qc) - - stability = self.calculate_containment_stability(counts) - self.update_containment_parameters(stability) - - initial_state = np.ones(self.num_qubits) / np.sqrt(self.num_qubits) - evolved_state = self.quantum_system.evolve_state(initial_state) - - return { - "counts": counts, - "stability": stability, - "parameters": self.parameters, - "quantum_state": evolved_state - } diff --git a/golden_harmonic_lwe.py b/golden_harmonic_lwe.py deleted file mode 100644 index afd30bd..0000000 --- a/golden_harmonic_lwe.py +++ /dev/null @@ -1,79 +0,0 @@ - -import numpy as np -import time -from tqdm import tqdm - -class GoldenHarmonicLWE: - def __init__(self, n=256, q=4093, sigma=1.0, key_lifetime=3600): - self.n = n - self.q = q - self.sigma = sigma - self.phi = (1 + np.sqrt(5)) / 2 # Golden ratio - self.base = 32 # Increased base for better granularity - self.key_lifetime = key_lifetime - self.generate_new_key() - - def generate_new_key(self): - self.key = np.random.randint(0, self.q, size=self.n) - self.key_generated_time = time.time() - - def is_key_valid(self): - return time.time() - self.key_generated_time < self.key_lifetime - - def get_encryption_frequency(self): - if not self.is_key_valid(): - self.generate_new_key() - return (np.sum(self.key) % self.q) / self.q * 10 + self.phi # Combine with golden ratio - - def generate_quantum_signal(self, message): - t = np.linspace(0, 1, len(message)) - freq = self.get_encryption_frequency() - return np.sin(2 * np.pi * freq * t) * message - - def encode_message(self, message): - quantum_signal = self.generate_quantum_signal(message) - encoded = np.rint((quantum_signal + 1) * (self.base - 1) / 2).astype(int) - return encoded - - def decode_message(self, encoded): - if not self.is_key_valid(): - raise ValueError("Decryption key has expired") - t = np.linspace(0, 1, len(encoded)) - freq = self.get_encryption_frequency() - carrier = np.sin(2 * np.pi * freq * t) - decoded_signal = 2 * encoded.astype(float) / (self.base - 1) - 1 - return (decoded_signal * carrier > 0).astype(int) - -def run_test_suite(message_lengths, num_trials): - results = [] - for length in tqdm(message_lengths, desc="Testing message lengths"): - success_rates = [] - for _ in range(num_trials): - ghl = GoldenHarmonicLWE(key_lifetime=10) - test_message = np.random.randint(0, 2, length) - encoded = ghl.encode_message(test_message) - decoded = ghl.decode_message(encoded) - success_rate = np.mean(test_message == decoded) * 100 - success_rates.append(success_rate) - avg_success_rate = np.mean(success_rates) - std_success_rate = np.std(success_rates) - results.append((length, avg_success_rate, std_success_rate)) - return results - -if __name__ == "__main__": - # Run the test suite - message_lengths = [100, 500, 1000, 5000, 10000] - num_trials = 50 - - print("Running Golden Harmonic LWE Test Suite...") - test_results = run_test_suite(message_lengths, num_trials) - - print(" -Test Results:") - print("Message Length | Avg Success Rate (%) | Std Dev") - print("-------------------------------------------------") - for length, avg_rate, std_rate in test_results: - print(f"{length:14d} | {avg_rate:19.2f} | {std_rate:7.2f}") - - print(" -Done") diff --git a/harmonic_balancer.py b/harmonic_balancer.py deleted file mode 100644 index 94001f9..0000000 --- a/harmonic_balancer.py +++ /dev/null @@ -1,71 +0,0 @@ -# algorithm/harmonic_balancer.py - -import numpy as np -import matplotlib.pyplot as plt -from .quantum_system import QuantumSystem -from ..utils.helpers import phi_pi_transition, generate_harmony_vector, state_to_dna, count_valid_codons, calculate_gc_content, calculate_base_balance - -class HarmonicBalancer: - def __init__(self, num_qubits, max_iterations, harmony_memory_size, objective_function=None, convergence_threshold=1e-6): - self.num_qubits = num_qubits - self.max_iterations = max_iterations - self.harmony_memory_size = harmony_memory_size - self.harmony_memory = [generate_harmony_vector(num_qubits) for _ in range(harmony_memory_size)] - self.best_solution = None - self.best_score = -np.inf - self.history = {'scores': [], 'states': []} - self.quantum_system = QuantumSystem(num_qubits) - self.objective_function = objective_function if objective_function else self.default_objective_function - self.convergence_threshold = convergence_threshold - - def default_objective_function(self, vector, param=1): - return np.sum(vector) * param - - def run_experiment(self): - for iteration in range(self.max_iterations): - new_harmony_vector = self.generate_new_harmony(transition_constant=0.1) - evolved_state = new_harmony_vector - score = self.objective_function(evolved_state) - self.update_harmony_memory(new_harmony_vector, evolved_state, score) - self.history['scores'].append(score) - if self.check_convergence(): - break - - def generate_new_harmony(self, transition_constant): - # Generate a new harmony vector based on the transition constant - return generate_harmony_vector(self.num_qubits) - - def update_harmony_memory(self, new_vector, evolved_state, score): - # Update the harmony memory with the new vector and score - if score > self.best_score: - self.best_score = score - self.best_solution = new_vector - self.harmony_memory.append(new_vector) - if len(self.harmony_memory) > self.harmony_memory_size: - self.harmony_memory.pop(0) - - def check_convergence(self): - # Check if the algorithm has converged - if len(self.history['scores']) < 2: - return False - return abs(self.history['scores'][-1] - self.history['scores'][-2]) < self.convergence_threshold - - def apply_golden_harmony(self, R, F, E): - # Apply the Golden Harmony Theory Integration - return np.sqrt((R * F**2) + E**2) - - def apply_resonance_condition(self, F0, k, m, omega, b): - # Apply the Resonance Condition - return F0 / np.sqrt((k - m * omega**2)**2 + (b * omega)**2) - - def apply_wave_interference(self, y1, y2): - # Apply the Wave Interference - return y1 + y2 - - def plot_convergence(self): - plt.plot(self.history['scores']) - plt.title('Convergence of Harmonic Balancer Algorithm') - plt.xlabel('Iteration') - plt.ylabel('Best Score') - plt.grid(True) - plt.show() \ No newline at end of file diff --git a/harmonic_balancer_modified.py b/harmonic_balancer_modified.py deleted file mode 100644 index 8895b29..0000000 --- a/harmonic_balancer_modified.py +++ /dev/null @@ -1,54 +0,0 @@ - -# algorithm/harmonic_balancer.py - -import numpy as np # type: ignore -import matplotlib.pyplot as plt # type: ignore -from quantum_system import QuantumSystem -from utils import phi_pi_transition, generate_harmony_vector, state_to_dna, count_valid_codons, calculate_gc_content, calculate_base_balance - -class HarmonicBalancer: - def __init__(self, num_qubits, max_iterations, harmony_memory_size, objective_function=None, convergence_threshold=1e-6): - self.num_qubits = num_qubits - self.max_iterations = max_iterations - self.harmony_memory_size = harmony_memory_size - self.harmony_memory = [generate_harmony_vector(num_qubits) for _ in range(harmony_memory_size)] - self.best_solution = None - self.best_score = -np.inf - self.history = {'scores': [], 'states': []} - self.quantum_system = QuantumSystem(num_qubits) - self.objective_function = objective_function if objective_function else self.default_objective_function - self.convergence_threshold = convergence_threshold - - def default_objective_function(self, vector, param=1): - return np.sum(vector) * param - - def run_experiment(self): - for iteration in range(self.max_iterations): - new_harmony_vector = self.generate_new_harmony(transition_constant=0.1) - evolved_state = new_harmony_vector - score = self.objective_function(evolved_state) - self.update_harmony_memory(new_harmony_vector, evolved_state, score) - self.history['scores'].append(score) - self.history['states'].append(evolved_state) - self.quantum_system.update_parameters(evolved_state, score, transition_constant=0.1) - - if iteration > 0 and abs(self.history['scores'][-1] - self.history['scores'][-2]) < self.convergence_threshold: - print(f"Convergence achieved at iteration {iteration}") - break - - return self.best_solution, self.best_score - - def generate_new_harmony(self, transition_constant): - selected_index = np.random.randint(self.harmony_memory_size) - selected_vector = self.harmony_memory[selected_index] - perturbation = np.random.normal(0, transition_constant / 10, size=len(selected_vector)) - new_vector = selected_vector + perturbation - new_vector = np.clip(new_vector, 0, 1) - return new_vector - - def update_harmony_memory(self, new_harmony_vector, evolved_state, score): - if score > self.best_score: - self.best_solution = evolved_state - self.best_score = score - worst_index = np.argmin([self.objective_function(harmony) for harmony in self.harmony_memory]) - self.harmony_memory[worst_index] = new_harmony_vector \ No newline at end of file diff --git a/hybrid_graphene_reactor_simulation.py b/hybrid_graphene_reactor_simulation.py deleted file mode 100644 index c6c1524..0000000 --- a/hybrid_graphene_reactor_simulation.py +++ /dev/null @@ -1,26 +0,0 @@ -import numpy as np -from quantum_resonance_circuit import QuantumResonanceCircuit - -class HybridGrapheneReactor: - def __init__(self, num_particles=1000, subspace_dimensions=11, - interaction_strength=0.1, decoherence_rate=0.01): - self.num_particles = num_particles - self.subspace_dimensions = subspace_dimensions - self.interaction_strength = interaction_strength - self.decoherence_rate = decoherence_rate - self.circuit = QuantumResonanceCircuit() - self.quantum_state = self.circuit.initialize_state() - - def update_quantum_state(self, dt=1e-12): - # Coherent evolution - self.quantum_state = self.circuit.evolve_state(self.quantum_state, dt) - # Apply decoherence - self.apply_decoherence(dt) - - def apply_decoherence(self, dt): - decay = np.exp(-self.decoherence_rate * dt) - self.quantum_state *= decay - self.quantum_state /= np.linalg.norm(self.quantum_state) - - def get_system_state(self): - return self.quantum_state diff --git a/objective_function.py b/objective_function.py deleted file mode 100644 index caa9fb8..0000000 --- a/objective_function.py +++ /dev/null @@ -1,4 +0,0 @@ -import numpy as np # type: ignore - -def custom_objective_function(vector): - return np.sum(vector) \ No newline at end of file diff --git a/quantum_containment_algorithm.py b/quantum_containment_algorithm.py deleted file mode 100644 index d48854f..0000000 --- a/quantum_containment_algorithm.py +++ /dev/null @@ -1,41 +0,0 @@ - - import numpy as np - from qiskit import QuantumCircuit, execute, Aer - - def quantum_enhanced_containment(plasma_parameters): - # This is a simplified placeholder for the quantum algorithm - # In a real implementation, this would interface with quantum hardware - - qc = QuantumCircuit(3, 3) - qc.h(0) - qc.cx(0, 1) - qc.cx(0, 2) - qc.measure([0,1,2], [0,1,2]) - - backend = Aer.get_backend('qasm_simulator') - job = execute(qc, backend, shots=1000) - result = job.result() - counts = result.get_counts(qc) - - # Use the quantum result to optimize containment parameters - optimized_parameters = optimize_containment(counts, plasma_parameters) - - return optimized_parameters - - def optimize_containment(quantum_result, plasma_parameters): - # Placeholder for the classical optimization part - # This would use the quantum result to fine-tune containment parameters - optimized_parameters = plasma_parameters.copy() - # Optimization logic would go here - return optimized_parameters - - # Example usage - if __name__ == "__main__": - initial_parameters = { - "magnetic_field_strength": 5.0, - "plasma_temperature": 150e6, # 150 million Kelvin - "plasma_density": 1e20, # particles per cubic meter - } - optimized_parameters = quantum_enhanced_containment(initial_parameters) - print("Optimized parameters:", optimized_parameters) - \ No newline at end of file diff --git a/quantum_enhanced_lwe.py b/quantum_enhanced_lwe.py index 2a41f60..cd8aeab 100644 --- a/quantum_enhanced_lwe.py +++ b/quantum_enhanced_lwe.py @@ -90,3 +90,18 @@ def quantum_enhanced_encrypt(self, pk, m): c = (b + m * (self.q // 4)) % self.q return a, c + def calculate_entangled_pairs(self): + """ + Calculate the number of entangled pairs and their combinations. + """ + return self.n * (self.n - 1) // 2 + + def evaluate_evolutionary_potential(self, x, y): + """ + Evaluate the evolutionary potential of a pair. + :param x: First element of the pair + :param y: Second element of the pair + :return: Probability of successful evolution + """ + return np.random.rand() # Placeholder for actual probability calculation + diff --git a/quantum_reactor_simulation.py b/quantum_reactor_simulation.py deleted file mode 100644 index a2d8f09..0000000 --- a/quantum_reactor_simulation.py +++ /dev/null @@ -1,91 +0,0 @@ - -import numpy as np -from scipy.integrate import odeint -from enhanced_ecosystem_with_psi import EnhancedHumanQuantumEcosystem - -class QuantumReactor(EnhancedHumanQuantumEcosystem): - def __init__(self, num_particles=1000, subspace_dimensions=11, interaction_strength=0.1, base_frequency=1e15): - super().__init__(num_groups=subspace_dimensions, interaction_strength=interaction_strength) - self.num_particles = num_particles - self.subspace_dimensions = subspace_dimensions - self.particle_states = np.random.rand(num_particles, subspace_dimensions) - self.fusion_threshold = 0.95 - self.fusion_energy = 17.6 # MeV for D-T fusion - - def subspace_excitation(self, t): - return np.sin(2 * np.pi * self.base_frequency * t + self.psi) - - def quantum_tunneling(self, particle_states): - tunneling_prob = np.exp(-1 / (particle_states + 1e-10)) - return np.random.rand(*particle_states.shape) < tunneling_prob - - def fusion_reaction(self, particle_states): - fusion_prob = np.mean(particle_states, axis=1) - fusion_events = np.random.rand(self.num_particles) < fusion_prob - return fusion_events - - def calculate_energy_output(self, fusion_events): - return np.sum(fusion_events) * self.fusion_energy - - def reactor_dynamics(self, t, state): - particle_states = state.reshape((self.num_particles, self.subspace_dimensions)) - - # Apply subspace excitation - excitation = self.subspace_excitation(t) - particle_states *= (1 + 0.1 * excitation) - - # Apply quantum tunneling - tunneling = self.quantum_tunneling(particle_states) - particle_states[tunneling] += 0.1 - - # Apply harmonic balancer effect - balancer_effect = 0.1 * np.tanh(particle_states) - particle_states += balancer_effect - - # Calculate fusion events - fusion_events = self.fusion_reaction(particle_states) - - # Reset fused particles - particle_states[fusion_events] = np.random.rand(np.sum(fusion_events), self.subspace_dimensions) - - # Calculate energy output - energy_output = self.calculate_energy_output(fusion_events) - - return particle_states.flatten(), energy_output - - def run_simulation(self, duration, time_steps): - t = np.linspace(0, duration, time_steps) - initial_state = self.particle_states.flatten() - - def ode_wrapper(state, t): - new_state, _ = self.reactor_dynamics(t, state) - return new_state - - states = odeint(ode_wrapper, initial_state, t) - - energy_outputs = [] - for i in range(len(t)): - _, energy = self.reactor_dynamics(t[i], states[i]) - energy_outputs.append(energy) - - return t, states, energy_outputs - -def run_quantum_reactor_simulation(): - reactor = QuantumReactor() - duration = 1e-12 # 1 picosecond - time_steps = 1000 - - t, states, energy_outputs = reactor.run_simulation(duration, time_steps) - - total_energy = np.sum(energy_outputs) - average_power = total_energy / duration - - print(f"Quantum Reactor Simulation Results:") - print(f"Total Energy Output: {total_energy:.2f} MeV") - print(f"Average Power Output: {average_power:.2f} MeV/s") - print(f"Peak Power Output: {np.max(energy_outputs):.2f} MeV/s") - - return t, states, energy_outputs - -if __name__ == "__main__": - run_quantum_reactor_simulation() diff --git a/quantum_system.py b/quantum_system.py deleted file mode 100644 index 9de54ae..0000000 --- a/quantum_system.py +++ /dev/null @@ -1,55 +0,0 @@ -import numpy as np - -class QuantumSystem: - def __init__(self, num_qubits): - self.num_qubits = num_qubits - self.parameters = np.zeros(num_qubits) - self.state = np.zeros((num_qubits, num_qubits)) - self.initialize_circuit() - - def initialize_circuit(self): - # Initialize the hybrid graphene-silicon-diamond quantum circuit - self.graphene_layer = np.random.rand(self.num_qubits) - self.silicon_interface = np.random.rand(self.num_qubits, self.num_qubits) - self.diamond_layer = np.random.rand(self.num_qubits) - - def evolve_state(self, state, steps=1): - if state.shape[0] != self.num_qubits: - raise ValueError("Invalid state vector shape") - evolved_state = state - for _ in range(steps): - evolved_state = self.apply_quantum_operations(evolved_state) - return evolved_state / np.linalg.norm(evolved_state) - - def apply_quantum_operations(self, state): - # Apply quantum operations based on the hybrid circuit - state = np.dot(self.silicon_interface, state) - state = state * self.graphene_layer - state = state + self.diamond_layer - return state - - def update_parameters(self, state, score, transition_constant): - self.parameters += transition_constant * score * state - - def get_parameters(self): - """ - Get the current parameters of the quantum system. - - Returns: - np.ndarray: The current parameters. - """ - return self.parameters - - def reset_parameters(self): - """ - Reset the parameters of the quantum system to zero. - """ - self.parameters = np.zeros(self.num_qubits) - - def encode_dna_sequence(self, sequence): - # Encode a DNA sequence into a quantum state - dna_mapping = {'A': 0, 'T': 1, 'C': 2, 'G': 3} - encoded_state = np.zeros(self.num_qubits) - for i, base in enumerate(sequence): - encoded_state[i % self.num_qubits] += dna_mapping[base] - return encoded_state / np.linalg.norm(encoded_state) \ No newline at end of file diff --git a/user_neural_pattern.py b/user_neural_pattern.py deleted file mode 100644 index ef53721..0000000 --- a/user_neural_pattern.py +++ /dev/null @@ -1,25 +0,0 @@ - -import torch -import torch.nn as nn - -class UserNeuralPattern(nn.Module): - def __init__(self, input_dim, pattern_dim): - super(UserNeuralPattern, self).__init__() - self.pattern_layer = nn.Sequential( - nn.Linear(input_dim, pattern_dim), - nn.ReLU(), - nn.Linear(pattern_dim, pattern_dim // 2), - nn.Tanh() - ) - - def forward(self, user_input): - return self.pattern_layer(user_input) - -# Example usage -input_dim = 128 -pattern_dim = 64 -user_pattern = UserNeuralPattern(input_dim, pattern_dim) - -# Generate a pattern for a given user input -user_input = torch.randn(input_dim) -pattern = user_pattern(user_input) diff --git a/utils.py b/utils.py deleted file mode 100644 index b2218b1..0000000 --- a/utils.py +++ /dev/null @@ -1,37 +0,0 @@ -import math -import numpy as np # type: ignore - -BASE_PAIRS = ['A', 'T', 'G', 'C'] -START_CODON = 'ATG' -STOP_CODONS = ['TAA', 'TAG', 'TGA'] - -PHI = (1 + math.sqrt(5)) / 2 # Golden ratio - -def phi_pi_transition(state, transition_constant): - # Example implementation of phi_pi_transition - return state * transition_constant - -def generate_harmony_vector(size): - # Example implementation of generating a harmony vector - return np.random.rand(size) - -def state_to_dna(state): - # Example implementation of converting state to DNA sequence - return ''.join(['A' if x < 0.25 else 'C' if x < 0.5 else 'G' if x < 0.75 else 'T' for x in state]) - -def count_valid_codons(dna_sequence): - # Example implementation of counting valid codons - return sum(1 for i in range(0, len(dna_sequence), 3) if dna_sequence[i:i+3] in ['ATG', 'TAA', 'TAG', 'TGA']) - -def calculate_gc_content(dna_sequence): - # Example implementation of calculating GC content - return (dna_sequence.count('G') + dna_sequence.count('C')) / len(dna_sequence) - -def calculate_base_balance(dna_sequence): - # Example implementation of calculating base balance - return { - 'A': dna_sequence.count('A'), - 'C': dna_sequence.count('C'), - 'G': dna_sequence.count('G'), - 'T': dna_sequence.count('T') - } \ No newline at end of file