diff --git a/harmonic_balancer.py b/harmonic_balancer.py new file mode 100644 index 0000000..09c5b9a --- /dev/null +++ b/harmonic_balancer.py @@ -0,0 +1,70 @@ + +import numpy as np +import matplotlib.pyplot as plt +from .quantum_system import QuantumSystem +from ..utils.helpers import phi_pi_transition, generate_harmony_vector, state_to_dna, count_valid_codons, calculate_gc_content, calculate_base_balance + +class HarmonicBalancer: + def __init__(self, num_qubits, max_iterations, harmony_memory_size, objective_function=None, convergence_threshold=1e-6): + self.num_qubits = num_qubits + self.max_iterations = max_iterations + self.harmony_memory_size = harmony_memory_size + self.harmony_memory = [generate_harmony_vector(num_qubits) for _ in range(harmony_memory_size)] + self.best_solution = None + self.best_score = -np.inf + self.history = {'scores': [], 'states': []} + self.quantum_system = QuantumSystem(num_qubits) + self.objective_function = objective_function if objective_function else self.default_objective_function + self.convergence_threshold = convergence_threshold + + def default_objective_function(self, vector, param=1): + return np.sum(vector) * param + + def run_experiment(self): + for iteration in range(self.max_iterations): + new_harmony_vector = self.generate_new_harmony(transition_constant=0.1) + evolved_state = new_harmony_vector + score = self.objective_function(evolved_state) + self.update_harmony_memory(new_harmony_vector, evolved_state, score) + self.history['scores'].append(score) + if self.check_convergence(): + break + + def generate_new_harmony(self, transition_constant): + # Generate a new harmony vector based on the transition constant + return generate_harmony_vector(self.num_qubits) + + def update_harmony_memory(self, new_vector, evolved_state, score): + # Update the harmony memory with the new vector and score + if score > self.best_score: + self.best_score = score + self.best_solution = new_vector + self.harmony_memory.append(new_vector) + if len(self.harmony_memory) > self.harmony_memory_size: + self.harmony_memory.pop(0) + + def check_convergence(self): + # Check if the algorithm has converged + if len(self.history['scores']) < 2: + return False + return abs(self.history['scores'][-1] - self.history['scores'][-2]) < self.convergence_threshold + + def apply_golden_harmony(self, R, F, E): + # Apply the Golden Harmony Theory Integration + return np.sqrt((R * F**2) + E**2) + + def apply_resonance_condition(self, F0, k, m, omega, b): + # Apply the Resonance Condition + return F0 / np.sqrt((k - m * omega**2)**2 + (b * omega)**2) + + def apply_wave_interference(self, y1, y2): + # Apply the Wave Interference + return y1 + y2 + + def plot_convergence(self): + plt.plot(self.history['scores']) + plt.title('Convergence of Harmonic Balancer Algorithm') + plt.xlabel('Iteration') + plt.ylabel('Best Score') + plt.grid(True) + plt.show() diff --git a/quantum_resonance_circuit.py b/quantum_resonance_circuit.py index 88e615a..9218e16 100644 --- a/quantum_resonance_circuit.py +++ b/quantum_resonance_circuit.py @@ -1,4 +1,6 @@ + import numpy as np +from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister class QuantumResonanceCircuit: def __init__(self, resonance_freq=4.40e9, coupling_strength=0.1): @@ -7,9 +9,11 @@ def __init__(self, resonance_freq=4.40e9, coupling_strength=0.1): self.num_qubits = 4 def initialize_state(self): + """Initialize the quantum state""" return np.array([1.0] + [0.0] * (2**self.num_qubits - 1), dtype=complex) def get_hamiltonian(self): + """Calculate the Hamiltonian of the system""" dim = 2**self.num_qubits H = np.zeros((dim, dim), dtype=complex) # Add resonant coupling terms @@ -22,6 +26,48 @@ def get_hamiltonian(self): return H def evolve_state(self, state, time): + """Evolve the quantum state over time""" H = self.get_hamiltonian() U = np.exp(-1j * H * time) return U @ state + + def calculate_resonance_function(self, x, y): + """ + Calculate the resonance function f(x,y) for a pair of qubits + """ + return np.exp(-((x - y)**2) / (2 * self.coupling_strength)) + + def calculate_evolutionary_potential(self, x, y): + """ + Calculate the evolutionary potential P(x,y) for a pair of qubits + """ + resonance = self.calculate_resonance_function(x, y) + return resonance * np.exp(-1j * self.resonance_freq * (x + y)) + + def get_total_possibilities(self): + """ + Calculate the total number of possibilities using the combined formula: + T = ∑(i=1 to n)∑(j=i+1 to n) f(x_i, y_j) · P(x_i, y_j) + """ + total = 0 + for i in range(self.num_qubits): + for j in range(i + 1, self.num_qubits): + f_xy = self.calculate_resonance_function(i, j) + p_xy = self.calculate_evolutionary_potential(i, j) + total += f_xy * np.abs(p_xy) + return total + + def create_entangled_circuit(self): + """ + Create a quantum circuit with entangled pairs + """ + qr = QuantumRegister(self.num_qubits, 'q') + cr = ClassicalRegister(self.num_qubits, 'c') + qc = QuantumCircuit(qr, cr) + + # Create entangled pairs + for i in range(0, self.num_qubits - 1, 2): + qc.h(qr[i]) + qc.cx(qr[i], qr[i+1]) + + return qc