-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfield_applications.py
82 lines (66 loc) · 3.5 KB
/
field_applications.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import numpy as np
from harmonic_balancer_project.enhanced_ecosystem_with_psi_and_frequency import EnhancedHumanQuantumEcosystem
from harmonic_balancer import HarmonicBalancer
def science_physics_example(ecosystem, time):
# Example: Calculating the energy of a photon using Planck's constant
frequency = ecosystem.base_frequency
energy = ecosystem.constants['planck'] * frequency
return f"Energy of a photon at {frequency} Hz: {energy} J"
def mathematics_geometry_example(ecosystem):
# Example: Calculating the area of a circle using Pi
radius = 5
area = ecosystem.constants['pi'] * radius**2
return f"Area of a circle with radius {radius}: {area} square units"
def engineering_electrical_example(ecosystem, voltage):
# Example: Calculating current using Ohm's law
resistance = 100 # ohms
current = voltage / resistance
return f"Current in a {resistance} ohm resistor at {voltage} volts: {current} amperes"
def healthcare_epidemiology_example(ecosystem, initial_infected, days):
# Example: Simple SIR model for disease spread
total_population = 1000000
recovery_rate = 0.1
transmission_rate = 0.3
susceptible = total_population - initial_infected
infected = initial_infected
recovered = 0
for _ in range(days):
new_infections = (transmission_rate * infected * susceptible) / total_population
new_recoveries = recovery_rate * infected
susceptible -= new_infections
infected += new_infections - new_recoveries
recovered += new_recoveries
return f"After {days} days: Susceptible: {susceptible:.0f}, Infected: {infected:.0f}, Recovered: {recovered:.0f}"
def atmospheric_meteorology_example(ecosystem, temperature_celsius):
# Example: Converting Celsius to Kelvin
temperature_kelvin = temperature_celsius + 273.15
return f"{temperature_celsius}°C is equal to {temperature_kelvin}K"
def geological_seismology_example(ecosystem, distance, time):
# Example: Calculating seismic wave velocity
velocity = distance / time
return f"Seismic wave velocity: {velocity} m/s"
def environmental_ecology_example(ecosystem, initial_population, carrying_capacity, growth_rate, time):
# Example: Logistic growth model
population = initial_population * ecosystem.constants['e']**(growth_rate * time) / (1 + initial_population * (ecosystem.constants['e']**(growth_rate * time) - 1) / carrying_capacity)
return f"Population after {time} time units: {population:.2f}"
def logistic_growth_example():
def logistic_growth_objective(vector, param):
r = 0.1 # Growth rate
K = 100 # Carrying capacity
return np.sum(vector) * r * (1 - np.sum(vector) / K)
balancer = HarmonicBalancer(num_qubits=4, max_iterations=100, harmony_memory_size=10, objective_function=logistic_growth_objective)
best_solution, best_score = balancer.run_experiment()
print("Best solution:", best_solution)
print("Best score:", best_score)
def run_examples():
ecosystem = EnhancedHumanQuantumEcosystem()
print(science_physics_example(ecosystem, 5e14))
print(mathematics_geometry_example(ecosystem))
print(engineering_electrical_example(ecosystem, 220))
print(healthcare_epidemiology_example(ecosystem, 100, 30))
print(atmospheric_meteorology_example(ecosystem, 25))
print(geological_seismology_example(ecosystem, 1000, 2))
print(environmental_ecology_example(ecosystem, 100, 1000, 0.1, 50))
if __name__ == "__main__":
run_examples()
logistic_growth_example()