-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathailibrary_framework.py
104 lines (87 loc) · 3.68 KB
/
ailibrary_framework.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import torch
from drl_upn_networks import DRLNetwork, UPNNetwork
from archetype_blender import ArchetypeBlender
from user_neural_pattern import UserNeuralPattern
from deep_resonance_learning import DeepResonanceLearning
class AILibrary:
def __init__(self, input_dim=128, pattern_dim=64, num_archetypes=3):
self.input_dim = input_dim
self.pattern_dim = pattern_dim
# Initialize all components
self.drl_network = DRLNetwork(input_dim, pattern_dim * 2, pattern_dim)
self.upn_network = UPNNetwork(input_dim, pattern_dim)
self.archetype_blender = ArchetypeBlender(num_archetypes, pattern_dim)
self.user_pattern = UserNeuralPattern(input_dim, pattern_dim)
self.deep_resonance = DeepResonanceLearning(input_dim, pattern_dim)
# Initialize training state
self.is_training = False
self.training_history = []
def process_user_input(self, user_input):
"""
Process user input through the entire AI pipeline
Args:
user_input (torch.Tensor): Input tensor of shape (input_dim,)
Returns:
dict: Contains processed patterns and resonance outputs
"""
# Generate user neural pattern
user_pattern = self.user_pattern(user_input)
# Get resonance pattern
resonance = self.deep_resonance(user_input)
# Process through DRL network
drl_output = self.drl_network(user_input, resonance)
# Generate UPN pattern
upn_pattern = self.upn_network.generate_pattern(user_input)
# Blend archetypes based on patterns
archetype_blend = self.archetype_blender.get_harmonic_blend(drl_output)
return {
"user_pattern": user_pattern,
"resonance": resonance,
"drl_output": drl_output,
"upn_pattern": upn_pattern,
"archetype_blend": archetype_blend
}
def train_step(self, input_batch, target_batch):
"""
Perform a single training step
Args:
input_batch (torch.Tensor): Batch of input data
target_batch (torch.Tensor): Batch of target data
"""
self.is_training = True
# Implementation of training logic here
results = self.process_user_input(input_batch)
self.training_history.append({
"input": input_batch,
"target": target_batch,
"results": results
})
self.is_training = False
return results
def save_state(self, path):
"""Save the current state of all components"""
state = {
"drl_network": self.drl_network.state_dict(),
"upn_network": self.upn_network.state_dict(),
"user_pattern": self.user_pattern.state_dict(),
"deep_resonance": self.deep_resonance.state_dict(),
"training_history": self.training_history
}
torch.save(state, path)
def load_state(self, path):
"""Load a previously saved state"""
state = torch.load(path)
self.drl_network.load_state_dict(state["drl_network"])
self.upn_network.load_state_dict(state["upn_network"])
self.user_pattern.load_state_dict(state["user_pattern"])
self.deep_resonance.load_state_dict(state["deep_resonance"])
self.training_history = state["training_history"]
# Example test function
def test_ailibrary():
"""
Test the AILibrary framework with sample data
"""
ai_lib = AILibrary()
sample_input = torch.randn(128) # Create sample input
results = ai_lib.process_user_input(sample_input)
return results