-
Notifications
You must be signed in to change notification settings - Fork 6
/
plot_comparision.py
146 lines (120 loc) · 4.9 KB
/
plot_comparision.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#!/usr/bin/python
# -*- coding: utf-8 -*-
"""
==============================================
Prototype Selection and Generation Comparision
==============================================
A comparison of a several prototype selection and generation algorithms in
the project on synthetic datasets.
The point of this example is to illustrate the nature of decision boundaries
after applying instance reduction techniques.
This should be taken with a grain of salt, as the intuition conveyed by
these examples does not necessarily carry over to real datasets.
In particular in high dimensional spaces data can more easily be separated
linearly and the simplicity of classifiers such as naive Bayes and linear SVMs
might lead to better generalization.
The plots show training points in solid colors and testing points
semi-transparent.
The lower right shows:
- S: score on the traning set.
- R: reduction ratio.
License: BSD 3 clause
"""
print(__doc__)
import numpy as np
import pylab as pl
from matplotlib.colors import ListedColormap
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.neighbors import KNeighborsClassifier
from protopy.selection.enn import ENN
from protopy.selection.cnn import CNN
from protopy.selection.renn import RENN
from protopy.selection.allknn import AllKNN
from protopy.selection.tomek_links import TomekLinks
from protopy.selection.ssma import SSMA
from protopy.generation.sgp import SGP, SGP2, ASGP
h = .02 # step size in the mesh
names = ["KNN", "ENN", "CNN", "RENN", "AllKNN", "Tomek Links", "SGP", "SGP2", "ASGP", "SSMA"]
classifiers = [
# KNeighborsClassifier(3),
ENN(n_neighbors=3),
CNN(n_neighbors=3),
# RENN(n_neighbors=3),
# AllKNN(n_neighbors=3),
# TomekLinks(n_neighbors=1),
# SGP(r_min=0.05, r_mis=0.05),
# SGP2(r_min=0.05, r_mis=0.05),
ASGP(r_min=0.05, r_mis=0.05),
SSMA()]
X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,
random_state=1, n_clusters_per_class=1)
rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)
linearly_separable = (X, y)
datasets = [make_moons(noise=0.3, random_state=0),
make_circles(noise=0.2, factor=0.5, random_state=1),
linearly_separable
]
figure = pl.figure(figsize=(27, 9))
i = 1
# iterate over datasets
for ds in datasets:
# preprocess dataset, split into training and test part
X, y = ds
X = StandardScaler().fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4)
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
# just plot the dataset first
cm = pl.cm.RdBu
cm_bright = ListedColormap(['#FF0000', '#0000FF'])
ax = pl.subplot(len(datasets), len(classifiers) + 1, i)
# Plot the training points
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)
# and testing points
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.2)
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
i += 1
# iterate over classifiers
for name, clf in zip(names, classifiers):
ax = pl.subplot(len(datasets), len(classifiers) + 1, i)
clf.fit(X_train, y_train)
score = clf.score(X_test, y_test)
red = 0.0
if hasattr(clf, 'reduction_') and clf.reduction_ != None:
red = clf.reduction_
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
if hasattr(clf, "decision_function"):
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
else:
Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]
# Put the result into a color plot
Z = Z.reshape(xx.shape)
ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)
if hasattr(clf, 'reduction_'):
X_prot, y_prot = clf.X_, clf.y_
else:
X_prot, y_prot = X_train, y_train
# Plot also the training points
ax.scatter(X_prot[:, 0], X_prot[:, 1], c=y_prot, cmap=cm_bright)
# and testing points
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright,
alpha=0.2)
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
ax.set_title(name)
ax.text(xx.max() - .3, yy.min() + .3, 'S:' + ('%.2f' % score).lstrip('0') + ' R:' + ('%.2f' % red).lstrip('0'),
size=15, horizontalalignment='right')
i += 1
figure.subplots_adjust(left=.02, right=.98)
pl.show()