This repository contains code for machine learning based lead optimization.
See this Colab for an interactive example of how to use a pre-trained DeepFrag model to generate predictions.
config
: fixed configuration information (eg. TRAIN/VAL/TEST partitions)configurations
: benchmark model configurations (seeconfigurations/README.md
)data
: training/inference data (seedata/README.md
)leadopt
: main module codemodels
: pytorch architecture definitionsdata_util.py
: utility code for reading packed fragment/fingerprint data filesgrid_util.py
: GPU-accelerated grid generation codemetrics.py
: pytorch implementations of several metricsmodel_conf.py
: contains code to configure and train modelsutil.py
: utility code for rdkit/openbabel processing
scripts
: data processing scripts (seescripts/README.md
)train.py
: CLI interface to launch training runs
You can build a virtualenv with the requirements:
$ python3 -m venv leadopt_env
$ source ./leadopt_env/bin/activate
$ pip install -r requirements.txt
Note: Cuda 10.1
is required during training
To train a model, you can use the train.py
utility script. You can specify model parameters as command line arguments or load parameters from a configuration args.json file.
python train.py \
--save_path=/path/to/model \
--wandb_project=my_project \
{model_type} \
--model_arg1=x \
--model_arg2=y \
...
or
python train.py \
--save_path=/path/to/model \
--wandb_project=my_project \
--configuration=./configurations/args.json
save_path
is a directory to save the best model. The directory will be created if it doesn't exist. If this is not provided, the model will not be saved.
wandb_project
is an optional wandb project name. If provided, the run will be logged to wandb.
See below for available models and model-specific parameters:
In this repository, trainable models are subclasses of model_conf.LeadoptModel
. This class encapsulates model configuration arguments and pytorch models and enables saving and loading multi-component models.
from leadopt.model_conf import LeadoptModel, MODELS
model = MODELS['voxel']({args...})
model.train(save_path='./mymodel')
...
model2 = LeadoptModel.load('./mymodel')
Internally, model arguments are configured by setting up an argparse
parser and passing around a dict
of configuration parameters in self._args
.
--no_partitions If set, disable the use of TRAIN/VAL partitions during
training.
-f FRAGMENTS, --fragments FRAGMENTS
Path to fragments file.
-fp FINGERPRINTS, --fingerprints FINGERPRINTS
Path to fingerprints file.
-lr LEARNING_RATE, --learning_rate LEARNING_RATE
--num_epochs NUM_EPOCHS
Number of epochs to train for.
--test_steps TEST_STEPS
Number of evaluation steps per epoch.
-b BATCH_SIZE, --batch_size BATCH_SIZE
--grid_width GRID_WIDTH
--grid_res GRID_RES
--fdist_min FDIST_MIN
Ignore fragments closer to the receptor than this
distance (Angstroms).
--fdist_max FDIST_MAX
Ignore fragments further from the receptor than this
distance (Angstroms).
--fmass_min FMASS_MIN
Ignore fragments smaller than this mass (Daltons).
--fmass_max FMASS_MAX
Ignore fragments larger than this mass (Daltons).
--ignore_receptor
--ignore_parent
-rec_typer {single,single_h,simple,simple_h,desc,desc_h}
-lig_typer {single,single_h,simple,simple_h,desc,desc_h}
-rec_channels REC_CHANNELS
-lig_channels LIG_CHANNELS
--in_channels IN_CHANNELS
--output_size OUTPUT_SIZE
--pad
--blocks BLOCKS [BLOCKS ...]
--fc FC [FC ...]
--use_all_labels
--dist_fn {mse,bce,cos,tanimoto}
--loss {direct,support_v1}