forked from lukablurr/n2n_v3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtwofish.c
1031 lines (899 loc) · 37.2 KB
/
twofish.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* $Id: twofish.c,v 2.0 2002/08/11 22:32:25 fknobbe Exp $
*
*
* Copyright (C) 1997-2000 The Cryptix Foundation Limited.
* Copyright (C) 2000 Farm9.
* Copyright (C) 2001 Frank Knobbe.
* All rights reserved.
*
* For Cryptix code:
* Use, modification, copying and distribution of this software is subject
* the terms and conditions of the Cryptix General Licence. You should have
* received a copy of the Cryptix General Licence along with this library;
* if not, you can download a copy from http://www.cryptix.org/ .
*
* For Farm9:
* --- [email protected], August 2000, converted from Java to C++, added CBC mode and
* ciphertext stealing technique, added AsciiTwofish class for easy encryption
* decryption of text strings
*
* Frank Knobbe <[email protected]>:
* --- April 2001, converted from C++ to C, prefixed global variables
* with TwoFish, substituted some defines, changed functions to make use of
* variables supplied in a struct, modified and added routines for modular calls.
* Cleaned up the code so that defines are used instead of fixed 16's and 32's.
* Created two general purpose crypt routines for one block and multiple block
* encryption using Joh's CBC code.
* Added crypt routines that use a header (with a magic and data length).
* (Basically a major rewrite).
*
* Note: Routines labeled _TwoFish are private and should not be used
* (or with extreme caution).
*
*/
#ifndef __TWOFISH_LIBRARY_SOURCE__
#define __TWOFISH_LIBRARY_SOURCE__
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include <ctype.h>
#include <sys/types.h>
#include "twofish.h"
bool TwoFish_srand=TRUE; /* if TRUE, first call of TwoFishInit will seed rand(); */
/* of TwoFishInit */
/* Fixed 8x8 permutation S-boxes */
static const uint8_t TwoFish_P[2][256] =
{
{ /* p0 */
0xA9, 0x67, 0xB3, 0xE8, 0x04, 0xFD, 0xA3, 0x76, 0x9A, 0x92, 0x80, 0x78,
0xE4, 0xDD, 0xD1, 0x38, 0x0D, 0xC6, 0x35, 0x98, 0x18, 0xF7, 0xEC, 0x6C,
0x43, 0x75, 0x37, 0x26, 0xFA, 0x13, 0x94, 0x48, 0xF2, 0xD0, 0x8B, 0x30,
0x84, 0x54, 0xDF, 0x23, 0x19, 0x5B, 0x3D, 0x59, 0xF3, 0xAE, 0xA2, 0x82,
0x63, 0x01, 0x83, 0x2E, 0xD9, 0x51, 0x9B, 0x7C, 0xA6, 0xEB, 0xA5, 0xBE,
0x16, 0x0C, 0xE3, 0x61, 0xC0, 0x8C, 0x3A, 0xF5, 0x73, 0x2C, 0x25, 0x0B,
0xBB, 0x4E, 0x89, 0x6B, 0x53, 0x6A, 0xB4, 0xF1, 0xE1, 0xE6, 0xBD, 0x45,
0xE2, 0xF4, 0xB6, 0x66, 0xCC, 0x95, 0x03, 0x56, 0xD4, 0x1C, 0x1E, 0xD7,
0xFB, 0xC3, 0x8E, 0xB5, 0xE9, 0xCF, 0xBF, 0xBA, 0xEA, 0x77, 0x39, 0xAF,
0x33, 0xC9, 0x62, 0x71, 0x81, 0x79, 0x09, 0xAD, 0x24, 0xCD, 0xF9, 0xD8,
0xE5, 0xC5, 0xB9, 0x4D, 0x44, 0x08, 0x86, 0xE7, 0xA1, 0x1D, 0xAA, 0xED,
0x06, 0x70, 0xB2, 0xD2, 0x41, 0x7B, 0xA0, 0x11, 0x31, 0xC2, 0x27, 0x90,
0x20, 0xF6, 0x60, 0xFF, 0x96, 0x5C, 0xB1, 0xAB, 0x9E, 0x9C, 0x52, 0x1B,
0x5F, 0x93, 0x0A, 0xEF, 0x91, 0x85, 0x49, 0xEE, 0x2D, 0x4F, 0x8F, 0x3B,
0x47, 0x87, 0x6D, 0x46, 0xD6, 0x3E, 0x69, 0x64, 0x2A, 0xCE, 0xCB, 0x2F,
0xFC, 0x97, 0x05, 0x7A, 0xAC, 0x7F, 0xD5, 0x1A, 0x4B, 0x0E, 0xA7, 0x5A,
0x28, 0x14, 0x3F, 0x29, 0x88, 0x3C, 0x4C, 0x02, 0xB8, 0xDA, 0xB0, 0x17,
0x55, 0x1F, 0x8A, 0x7D, 0x57, 0xC7, 0x8D, 0x74, 0xB7, 0xC4, 0x9F, 0x72,
0x7E, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34, 0x6E, 0x50, 0xDE, 0x68,
0x65, 0xBC, 0xDB, 0xF8, 0xC8, 0xA8, 0x2B, 0x40, 0xDC, 0xFE, 0x32, 0xA4,
0xCA, 0x10, 0x21, 0xF0, 0xD3, 0x5D, 0x0F, 0x00, 0x6F, 0x9D, 0x36, 0x42,
0x4A, 0x5E, 0xC1, 0xE0
},
{ /* p1 */
0x75, 0xF3, 0xC6, 0xF4, 0xDB, 0x7B, 0xFB, 0xC8, 0x4A, 0xD3, 0xE6, 0x6B,
0x45, 0x7D, 0xE8, 0x4B, 0xD6, 0x32, 0xD8, 0xFD, 0x37, 0x71, 0xF1, 0xE1,
0x30, 0x0F, 0xF8, 0x1B, 0x87, 0xFA, 0x06, 0x3F, 0x5E, 0xBA, 0xAE, 0x5B,
0x8A, 0x00, 0xBC, 0x9D, 0x6D, 0xC1, 0xB1, 0x0E, 0x80, 0x5D, 0xD2, 0xD5,
0xA0, 0x84, 0x07, 0x14, 0xB5, 0x90, 0x2C, 0xA3, 0xB2, 0x73, 0x4C, 0x54,
0x92, 0x74, 0x36, 0x51, 0x38, 0xB0, 0xBD, 0x5A, 0xFC, 0x60, 0x62, 0x96,
0x6C, 0x42, 0xF7, 0x10, 0x7C, 0x28, 0x27, 0x8C, 0x13, 0x95, 0x9C, 0xC7,
0x24, 0x46, 0x3B, 0x70, 0xCA, 0xE3, 0x85, 0xCB, 0x11, 0xD0, 0x93, 0xB8,
0xA6, 0x83, 0x20, 0xFF, 0x9F, 0x77, 0xC3, 0xCC, 0x03, 0x6F, 0x08, 0xBF,
0x40, 0xE7, 0x2B, 0xE2, 0x79, 0x0C, 0xAA, 0x82, 0x41, 0x3A, 0xEA, 0xB9,
0xE4, 0x9A, 0xA4, 0x97, 0x7E, 0xDA, 0x7A, 0x17, 0x66, 0x94, 0xA1, 0x1D,
0x3D, 0xF0, 0xDE, 0xB3, 0x0B, 0x72, 0xA7, 0x1C, 0xEF, 0xD1, 0x53, 0x3E,
0x8F, 0x33, 0x26, 0x5F, 0xEC, 0x76, 0x2A, 0x49, 0x81, 0x88, 0xEE, 0x21,
0xC4, 0x1A, 0xEB, 0xD9, 0xC5, 0x39, 0x99, 0xCD, 0xAD, 0x31, 0x8B, 0x01,
0x18, 0x23, 0xDD, 0x1F, 0x4E, 0x2D, 0xF9, 0x48, 0x4F, 0xF2, 0x65, 0x8E,
0x78, 0x5C, 0x58, 0x19, 0x8D, 0xE5, 0x98, 0x57, 0x67, 0x7F, 0x05, 0x64,
0xAF, 0x63, 0xB6, 0xFE, 0xF5, 0xB7, 0x3C, 0xA5, 0xCE, 0xE9, 0x68, 0x44,
0xE0, 0x4D, 0x43, 0x69, 0x29, 0x2E, 0xAC, 0x15, 0x59, 0xA8, 0x0A, 0x9E,
0x6E, 0x47, 0xDF, 0x34, 0x35, 0x6A, 0xCF, 0xDC, 0x22, 0xC9, 0xC0, 0x9B,
0x89, 0xD4, 0xED, 0xAB, 0x12, 0xA2, 0x0D, 0x52, 0xBB, 0x02, 0x2F, 0xA9,
0xD7, 0x61, 0x1E, 0xB4, 0x50, 0x04, 0xF6, 0xC2, 0x16, 0x25, 0x86, 0x56,
0x55, 0x09, 0xBE, 0x91
}
};
static bool TwoFish_MDSready=FALSE;
static uint32_t TwoFish_MDS[4][256]; /* TwoFish_MDS matrix */
#define TwoFish_LFSR1(x) (((x)>>1)^(((x)&0x01)?TwoFish_MDS_GF_FDBK/2:0))
#define TwoFish_LFSR2(x) (((x)>>2)^(((x)&0x02)?TwoFish_MDS_GF_FDBK/2:0)^(((x)&0x01)?TwoFish_MDS_GF_FDBK/4:0))
#define TwoFish_Mx_1(x) ((uint32_t)(x)) /* force result to dword so << will work */
#define TwoFish_Mx_X(x) ((uint32_t)((x)^TwoFish_LFSR2(x))) /* 5B */
#define TwoFish_Mx_Y(x) ((uint32_t)((x)^TwoFish_LFSR1(x)^TwoFish_LFSR2(x))) /* EF */
#define TwoFish_RS_rem(x) { uint8_t b=(uint8_t)(x>>24); uint32_t g2=((b<<1)^((b&0x80)?TwoFish_RS_GF_FDBK:0))&0xFF; uint32_t g3=((b>>1)&0x7F)^((b&1)?TwoFish_RS_GF_FDBK>>1:0)^g2; x=(x<<8)^(g3<<24)^(g2<<16)^(g3<<8)^b; }
/*#define TwoFish__b(x,N) (((uint8_t *)&x)[((N)&3)^TwoFish_ADDR_XOR])*/ /* pick bytes out of a dword */
#define TwoFish_b0(x) TwoFish__b(x,0) /* extract LSB of uint32_t */
#define TwoFish_b1(x) TwoFish__b(x,1)
#define TwoFish_b2(x) TwoFish__b(x,2)
#define TwoFish_b3(x) TwoFish__b(x,3) /* extract MSB of uint32_t */
uint8_t TwoFish__b(uint32_t x,int n)
{ n&=3;
while(n-->0)
x>>=8;
return (uint8_t)x;
}
/* TwoFish Initialization
*
* This routine generates a global data structure for use with TwoFish,
* initializes important values (such as subkeys, sBoxes), generates subkeys
* and precomputes the MDS matrix if not already done.
*
* Input: User supplied password (will be appended by default password of 'SnortHas2FishEncryptionRoutines!')
*
* Output: Pointer to TWOFISH structure. This data structure contains key dependent data.
* This pointer is used with all other crypt functions.
*/
TWOFISH *TwoFishInit(const uint8_t *userkey, uint32_t keysize)
{ TWOFISH *tfdata;
int i,x,m;
uint8_t tkey[TwoFish_KEY_LENGTH+40];
memset( tkey, 0, TwoFish_KEY_LENGTH+40 );
tfdata=(TWOFISH *)malloc(sizeof(TWOFISH)); /* allocate the TwoFish structure */
if(tfdata!=NULL)
{
/* Changes here prevented a dangerous random key segment for keys of length < TwoFish_KEY_LENGTH */
if(keysize > 0)
{
memcpy( tkey, userkey, keysize ); /* The rest will be zeros */
}
else
{
memcpy( tkey, TwoFish_DEFAULT_PW, TwoFish_DEFAULT_PW_LEN ); /* if no key defined, use default password */
}
/* This loop is awful - surely a loop on memcpy() would be clearer and more efficient */
for(i=0,x=0,m=keysize;i<TwoFish_KEY_LENGTH;i++) /* copy into data structure */
{
tfdata->key[i]=tkey[x++]; /* fill the whole keyspace with repeating key. */
if(x==m)
x=0;
}
if(!TwoFish_MDSready)
_TwoFish_PrecomputeMDSmatrix(); /* "Wake Up, Neo" */
_TwoFish_MakeSubKeys(tfdata); /* generate subkeys */
_TwoFish_ResetCBC(tfdata); /* reset the CBC */
tfdata->output=NULL; /* nothing to output yet */
tfdata->dontflush=FALSE; /* reset decrypt skip block flag */
if(TwoFish_srand)
{
TwoFish_srand=FALSE;
/* REVISIT: BbMaj7 : Should choose something with less predictability
* particularly for embedded targets with no real-time clock. */
srand((unsigned int)time(NULL));
}
}
return tfdata; /* return the data pointer */
}
void TwoFishDestroy(TWOFISH *tfdata)
{ if(tfdata!=NULL)
free(tfdata);
}
/* en/decryption with CBC mode */
uint32_t _TwoFish_CryptRawCBC(uint8_t *in,uint8_t *out,uint32_t len,bool decrypt,TWOFISH *tfdata)
{ uint32_t rl;
rl=len; /* remember how much data to crypt. */
while(len>TwoFish_BLOCK_SIZE) /* and now we process block by block. */
{ _TwoFish_BlockCrypt(in,out,TwoFish_BLOCK_SIZE,decrypt,tfdata); /* de/encrypt it. */
in+=TwoFish_BLOCK_SIZE; /* adjust pointers. */
out+=TwoFish_BLOCK_SIZE;
len-=TwoFish_BLOCK_SIZE;
}
if(len>0) /* if we have less than a block left... */
_TwoFish_BlockCrypt(in,out,len,decrypt,tfdata); /* ...then we de/encrypt that too. */
if(tfdata->qBlockDefined && !tfdata->dontflush) /* in case len was exactly one block... */
_TwoFish_FlushOutput(tfdata->qBlockCrypt,TwoFish_BLOCK_SIZE,tfdata); /* ...we need to write the... */
/* ...remaining bytes of the buffer */
return rl;
}
/* en/decryption on one block only */
uint32_t _TwoFish_CryptRaw16(uint8_t *in,uint8_t *out,uint32_t len,bool decrypt,TWOFISH *tfdata)
{ /* qBlockPlain already zero'ed through ResetCBC */
memcpy(tfdata->qBlockPlain,in,len); /* toss the data into it. */
_TwoFish_BlockCrypt16(tfdata->qBlockPlain,tfdata->qBlockCrypt,decrypt,tfdata); /* encrypt just that block without CBC. */
memcpy(out,tfdata->qBlockCrypt,TwoFish_BLOCK_SIZE); /* and return what we got */
return TwoFish_BLOCK_SIZE;
}
/* en/decryption without reset of CBC and output assignment */
uint32_t _TwoFish_CryptRaw(uint8_t *in,uint8_t *out,uint32_t len,bool decrypt,TWOFISH *tfdata)
{
if(in!=NULL && out!=NULL && len>0 && tfdata!=NULL) /* if we have valid data, then... */
{ if(len>TwoFish_BLOCK_SIZE) /* ...check if we have more than one block. */
return _TwoFish_CryptRawCBC(in,out,len,decrypt,tfdata); /* if so, use the CBC routines... */
else
return _TwoFish_CryptRaw16(in,out,len,decrypt,tfdata); /* ...otherwise just do one block. */
}
return 0;
}
/* TwoFish Raw Encryption
*
* Does not use header, but does use CBC (if more than one block has to be encrypted).
*
* Input: Pointer to the buffer of the plaintext to be encrypted.
* Pointer to the buffer receiving the ciphertext.
* The length of the plaintext buffer.
* The TwoFish structure.
*
* Output: The amount of bytes encrypted if successful, otherwise 0.
*/
uint32_t TwoFishEncryptRaw(uint8_t *in,
uint8_t *out,
uint32_t len,
TWOFISH *tfdata)
{ _TwoFish_ResetCBC(tfdata); /* reset CBC flag. */
tfdata->output=out; /* output straight into output buffer. */
return _TwoFish_CryptRaw(in,out,len,FALSE,tfdata); /* and go for it. */
}
/* TwoFish Raw Decryption
*
* Does not use header, but does use CBC (if more than one block has to be decrypted).
*
* Input: Pointer to the buffer of the ciphertext to be decrypted.
* Pointer to the buffer receiving the plaintext.
* The length of the ciphertext buffer (at least one cipher block).
* The TwoFish structure.
*
* Output: The amount of bytes decrypted if successful, otherwise 0.
*/
uint32_t TwoFishDecryptRaw(uint8_t *in,
uint8_t *out,
uint32_t len,
TWOFISH *tfdata)
{ _TwoFish_ResetCBC(tfdata); /* reset CBC flag. */
tfdata->output=out; /* output straight into output buffer. */
return _TwoFish_CryptRaw(in,out,len,TRUE,tfdata); /* and go for it. */
}
/* TwoFish Free
*
* Free's the allocated buffer.
*
* Input: Pointer to the TwoFish structure
*
* Output: (none)
*/
void TwoFishFree(TWOFISH *tfdata)
{ if(tfdata->output!=NULL) /* if a valid buffer is present... */
{ free(tfdata->output); /* ...then we free it for you... */
tfdata->output=NULL; /* ...and mark as such. */
}
}
/* TwoFish Set Output
*
* If you want to allocate the output buffer yourself,
* then you can set it with this function.
*
* Input: Pointer to your output buffer
* Pointer to the TwoFish structure
*
* Output: (none)
*/
void TwoFishSetOutput(uint8_t *outp,TWOFISH *tfdata)
{ tfdata->output=outp; /* (do we really need a function for this?) */
}
/* TwoFish Alloc
*
* Allocates enough memory for the output buffer that would be required
*
* Input: Length of the plaintext.
* Boolean flag for BinHex Output.
* Pointer to the TwoFish structure.
*
* Output: Returns a pointer to the memory allocated.
*/
void *TwoFishAlloc(uint32_t len,bool binhex,bool decrypt,TWOFISH *tfdata)
{
/* TwoFishFree(tfdata); */ /* (don't for now) discard whatever was allocated earlier. */
if(decrypt) /* if decrypting... */
{ if(binhex) /* ...and input is binhex encoded... */
len/=2; /* ...use half as much for output. */
len-=TwoFish_BLOCK_SIZE; /* Also, subtract the size of the header. */
}
else
{ len+=TwoFish_BLOCK_SIZE; /* the size is just increased by the header... */
if(binhex)
len*=2; /* ...and doubled if output is to be binhexed. */
}
tfdata->output=malloc(len+TwoFish_BLOCK_SIZE);/* grab some memory...plus some extra (it's running over somewhere, crashes without extra padding) */
return tfdata->output; /* ...and return to caller. */
}
/* bin2hex and hex2bin conversion */
void _TwoFish_BinHex(uint8_t *buf,uint32_t len,bool bintohex)
{ uint8_t *pi,*po,c;
if(bintohex)
{ for(pi=buf+len-1,po=buf+(2*len)-1;len>0;pi--,po--,len--) /* let's start from the end of the bin block. */
{ c=*pi; /* grab value. */
c&=15; /* use lower 4 bits. */
if(c>9) /* convert to ascii. */
c+=('a'-10);
else
c+='0';
*po--=c; /* set the lower nibble. */
c=*pi; /* grab value again. */
c>>=4; /* right shift 4 bits. */
c&=15; /* make sure we only have 4 bits. */
if(c>9) /* convert to ascii. */
c+=('a'-10);
else
c+='0';
*po=c; /* set the higher nibble. */
} /* and keep going. */
}
else
{ for(pi=buf,po=buf;len>0;pi++,po++,len-=2) /* let's start from the beginning of the hex block. */
{ c=tolower(*pi++)-'0'; /* grab higher nibble. */
if(c>9) /* convert to value. */
c-=('0'-9);
*po=c<<4; /* left shit 4 bits. */
c=tolower(*pi)-'0'; /* grab lower nibble. */
if(c>9) /* convert to value. */
c-=('0'-9);
*po|=c; /* and add to value. */
}
}
}
/* TwoFish Encryption
*
* Uses header and CBC. If the output area has not been intialized with TwoFishAlloc,
* this routine will alloc the memory. In addition, it will include a small 'header'
* containing the magic and some salt. That way the decrypt routine can check if the
* packet got decrypted successfully, and return 0 instead of garbage.
*
* Input: Pointer to the buffer of the plaintext to be encrypted.
* Pointer to the pointer to the buffer receiving the ciphertext.
* The pointer either points to user allocated output buffer space, or to NULL, in which case
* this routine will set the pointer to the buffer allocated through the struct.
* The length of the plaintext buffer.
* Can be -1 if the input is a null terminated string, in which case we'll count for you.
* Boolean flag for BinHex Output (if used, output will be twice as large as input).
* Note: BinHex conversion overwrites (converts) input buffer!
* The TwoFish structure.
*
* Output: The amount of bytes encrypted if successful, otherwise 0.
*/
uint32_t TwoFishEncrypt(uint8_t *in,
uint8_t **out,
signed long len,
bool binhex,
TWOFISH *tfdata)
{ uint32_t ilen,olen;
#if 0
/* This is so broken it doesn't deserve to live. */
if(len== -1) /* if we got -1 for len, we'll assume IN is a... */
ilen=strlen(in); /* ...\0 terminated string and figure len out ourselves... */
else
ilen=len; /* ...otherwise we trust you supply a correct length. */
#endif
ilen = len;
if(in!=NULL && out!=NULL && ilen>0 && tfdata!=NULL) /* if we got usable stuff, we'll do it. */
{ if(*out==NULL) /* if OUT points to a NULL pointer... */
*out=TwoFishAlloc(ilen,binhex,FALSE,tfdata); /* ...we'll (re-)allocate buffer space. */
if(*out!=NULL)
{ tfdata->output=*out; /* set output buffer. */
tfdata->header.salt=rand()*65536+rand(); /* toss in some salt. */
tfdata->header.length[0]= (uint8_t)(ilen);
tfdata->header.length[1]= (uint8_t)(ilen>>8);
tfdata->header.length[2]= (uint8_t)(ilen>>16);
tfdata->header.length[3]= (uint8_t)(ilen>>24);
memcpy(tfdata->header.magic,TwoFish_MAGIC,TwoFish_MAGIC_LEN); /* set the magic. */
olen=TwoFish_BLOCK_SIZE; /* set output counter. */
_TwoFish_ResetCBC(tfdata); /* reset the CBC flag */
_TwoFish_BlockCrypt((uint8_t *)&(tfdata->header),*out,olen,FALSE,tfdata); /* encrypt first block (without flush on 16 byte boundary). */
olen+=_TwoFish_CryptRawCBC(in,*out+TwoFish_BLOCK_SIZE,ilen,FALSE,tfdata); /* and encrypt the rest (we do not reset the CBC flag). */
if(binhex) /* if binhex... */
{ _TwoFish_BinHex(*out,olen,TRUE); /* ...convert output to binhex... */
olen*=2; /* ...and size twice as large. */
}
tfdata->output=*out;
return olen;
}
}
return 0;
}
/* TwoFish Decryption
*
* Uses header and CBC. If the output area has not been intialized with TwoFishAlloc,
* this routine will alloc the memory. In addition, it will check the small 'header'
* containing the magic. If magic does not match we return 0. Otherwise we return the
* amount of bytes decrypted (should be the same as the length in the header).
*
* Input: Pointer to the buffer of the ciphertext to be decrypted.
* Pointer to the pointer to the buffer receiving the plaintext.
* The pointer either points to user allocated output buffer space, or to NULL, in which case
* this routine will set the pointer to the buffer allocated through the struct.
* The length of the ciphertext buffer.
* Can be -1 if the input is a null terminated binhex string, in which case we'll count for you.
* Boolean flag for BinHex Input (if used, plaintext will be half as large as input).
* Note: BinHex conversion overwrites (converts) input buffer!
* The TwoFish structure.
*
* Output: The amount of bytes decrypted if successful, otherwise 0.
*/
uint32_t TwoFishDecrypt(uint8_t *in,
uint8_t **out,
signed long len,
bool binhex,
TWOFISH *tfdata)
{ uint32_t ilen,elen,olen;
const uint8_t cmagic[TwoFish_MAGIC_LEN]=TwoFish_MAGIC;
uint8_t *tbuf;
#if 0
/* This is so broken it doesn't deserve to live. */
if(len== -1) /* if we got -1 for len, we'll assume IN is a... */
ilen=strlen(in); /* ...\0 terminated string and figure len out ourselves... */
else
ilen=len; /* ...otherwise we trust you supply a correct length. */
#endif
ilen = len;
if(in!=NULL && out!=NULL && ilen>0 && tfdata!=NULL) /* if we got usable stuff, we'll do it. */
{ if(*out==NULL) /* if OUT points to a NULL pointer... */
*out=TwoFishAlloc(ilen,binhex,TRUE,tfdata); /* ...we'll (re-)allocate buffer space. */
if(*out!=NULL)
{ if(binhex) /* if binhex... */
{ _TwoFish_BinHex(in,ilen,FALSE); /* ...convert input to values... */
ilen/=2; /* ...and size half as much. */
}
_TwoFish_ResetCBC(tfdata); /* reset the CBC flag. */
tbuf=(uint8_t *)malloc(ilen+TwoFish_BLOCK_SIZE); /* get memory for data and header. */
if(tbuf==NULL)
return 0;
tfdata->output=tbuf; /* set output to temp buffer. */
olen=_TwoFish_CryptRawCBC(in,tbuf,ilen,TRUE,tfdata)-TwoFish_BLOCK_SIZE; /* decrypt the whole thing. */
memcpy(&(tfdata->header),tbuf,TwoFish_BLOCK_SIZE); /* copy first block into header. */
tfdata->output=*out;
for(elen=0;elen<TwoFish_MAGIC_LEN;elen++) /* compare magic. */
if(tfdata->header.magic[elen]!=cmagic[elen])
break;
if(elen==TwoFish_MAGIC_LEN) /* if magic matches then... */
{ elen=(tfdata->header.length[0]) |
(tfdata->header.length[1])<<8 |
(tfdata->header.length[2])<<16 |
(tfdata->header.length[3])<<24; /* .. we know how much to expect. */
if(elen>olen) /* adjust if necessary. */
elen=olen;
memcpy(*out,tbuf+TwoFish_BLOCK_SIZE,elen); /* copy data into intended output. */
free(tbuf);
return elen;
}
free(tbuf);
}
}
return 0;
}
void _TwoFish_PrecomputeMDSmatrix(void) /* precompute the TwoFish_MDS matrix */
{ uint32_t m1[2];
uint32_t mX[2];
uint32_t mY[2];
uint32_t i, j;
for (i = 0; i < 256; i++)
{ j = TwoFish_P[0][i] & 0xFF; /* compute all the matrix elements */
m1[0] = j;
mX[0] = TwoFish_Mx_X( j ) & 0xFF;
mY[0] = TwoFish_Mx_Y( j ) & 0xFF;
j = TwoFish_P[1][i] & 0xFF;
m1[1] = j;
mX[1] = TwoFish_Mx_X( j ) & 0xFF;
mY[1] = TwoFish_Mx_Y( j ) & 0xFF;
TwoFish_MDS[0][i] = m1[TwoFish_P_00] | /* fill matrix w/ above elements */
mX[TwoFish_P_00] << 8 |
mY[TwoFish_P_00] << 16 |
mY[TwoFish_P_00] << 24;
TwoFish_MDS[1][i] = mY[TwoFish_P_10] |
mY[TwoFish_P_10] << 8 |
mX[TwoFish_P_10] << 16 |
m1[TwoFish_P_10] << 24;
TwoFish_MDS[2][i] = mX[TwoFish_P_20] |
mY[TwoFish_P_20] << 8 |
m1[TwoFish_P_20] << 16 |
mY[TwoFish_P_20] << 24;
TwoFish_MDS[3][i] = mX[TwoFish_P_30] |
m1[TwoFish_P_30] << 8 |
mY[TwoFish_P_30] << 16 |
mX[TwoFish_P_30] << 24;
}
TwoFish_MDSready=TRUE;
}
void _TwoFish_MakeSubKeys(TWOFISH *tfdata) /* Expand a user-supplied key material into a session key. */
{ uint32_t k64Cnt = TwoFish_KEY_LENGTH / 8;
uint32_t k32e[4]; /* even 32-bit entities */
uint32_t k32o[4]; /* odd 32-bit entities */
uint32_t sBoxKey[4];
uint32_t offset,i,j;
uint32_t A, B, q=0;
uint32_t k0,k1,k2,k3;
uint32_t b0,b1,b2,b3;
/* split user key material into even and odd 32-bit entities and */
/* compute S-box keys using (12, 8) Reed-Solomon code over GF(256) */
for (offset=0,i=0,j=k64Cnt-1;i<4 && offset<TwoFish_KEY_LENGTH;i++,j--)
{ k32e[i] = tfdata->key[offset++];
k32e[i]|= tfdata->key[offset++]<<8;
k32e[i]|= tfdata->key[offset++]<<16;
k32e[i]|= tfdata->key[offset++]<<24;
k32o[i] = tfdata->key[offset++];
k32o[i]|= tfdata->key[offset++]<<8;
k32o[i]|= tfdata->key[offset++]<<16;
k32o[i]|= tfdata->key[offset++]<<24;
sBoxKey[j] = _TwoFish_RS_MDS_Encode( k32e[i], k32o[i] ); /* reverse order */
}
/* compute the round decryption subkeys for PHT. these same subkeys */
/* will be used in encryption but will be applied in reverse order. */
i=0;
while(i < TwoFish_TOTAL_SUBKEYS)
{ A = _TwoFish_F32( k64Cnt, q, k32e ); /* A uses even key entities */
q += TwoFish_SK_BUMP;
B = _TwoFish_F32( k64Cnt, q, k32o ); /* B uses odd key entities */
q += TwoFish_SK_BUMP;
B = B << 8 | B >> 24;
A += B;
tfdata->subKeys[i++] = A; /* combine with a PHT */
A += B;
tfdata->subKeys[i++] = A << TwoFish_SK_ROTL | A >> (32-TwoFish_SK_ROTL);
}
/* fully expand the table for speed */
k0 = sBoxKey[0];
k1 = sBoxKey[1];
k2 = sBoxKey[2];
k3 = sBoxKey[3];
for (i = 0; i < 256; i++)
{ b0 = b1 = b2 = b3 = i;
switch (k64Cnt & 3)
{ case 1: /* 64-bit keys */
tfdata->sBox[ 2*i ] = TwoFish_MDS[0][(TwoFish_P[TwoFish_P_01][b0]) ^ TwoFish_b0(k0)];
tfdata->sBox[ 2*i+1] = TwoFish_MDS[1][(TwoFish_P[TwoFish_P_11][b1]) ^ TwoFish_b1(k0)];
tfdata->sBox[0x200+2*i ] = TwoFish_MDS[2][(TwoFish_P[TwoFish_P_21][b2]) ^ TwoFish_b2(k0)];
tfdata->sBox[0x200+2*i+1] = TwoFish_MDS[3][(TwoFish_P[TwoFish_P_31][b3]) ^ TwoFish_b3(k0)];
break;
case 0: /* 256-bit keys (same as 4) */
b0 = (TwoFish_P[TwoFish_P_04][b0]) ^ TwoFish_b0(k3);
b1 = (TwoFish_P[TwoFish_P_14][b1]) ^ TwoFish_b1(k3);
b2 = (TwoFish_P[TwoFish_P_24][b2]) ^ TwoFish_b2(k3);
b3 = (TwoFish_P[TwoFish_P_34][b3]) ^ TwoFish_b3(k3);
case 3: /* 192-bit keys */
b0 = (TwoFish_P[TwoFish_P_03][b0]) ^ TwoFish_b0(k2);
b1 = (TwoFish_P[TwoFish_P_13][b1]) ^ TwoFish_b1(k2);
b2 = (TwoFish_P[TwoFish_P_23][b2]) ^ TwoFish_b2(k2);
b3 = (TwoFish_P[TwoFish_P_33][b3]) ^ TwoFish_b3(k2);
case 2: /* 128-bit keys */
tfdata->sBox[ 2*i ]=
TwoFish_MDS[0][(TwoFish_P[TwoFish_P_01][(TwoFish_P[TwoFish_P_02][b0]) ^
TwoFish_b0(k1)]) ^ TwoFish_b0(k0)];
tfdata->sBox[ 2*i+1]=
TwoFish_MDS[1][(TwoFish_P[TwoFish_P_11][(TwoFish_P[TwoFish_P_12][b1]) ^
TwoFish_b1(k1)]) ^ TwoFish_b1(k0)];
tfdata->sBox[0x200+2*i ]=
TwoFish_MDS[2][(TwoFish_P[TwoFish_P_21][(TwoFish_P[TwoFish_P_22][b2]) ^
TwoFish_b2(k1)]) ^ TwoFish_b2(k0)];
tfdata->sBox[0x200+2*i+1]=
TwoFish_MDS[3][(TwoFish_P[TwoFish_P_31][(TwoFish_P[TwoFish_P_32][b3]) ^
TwoFish_b3(k1)]) ^ TwoFish_b3(k0)];
}
}
}
/**
* Encrypt or decrypt exactly one block of plaintext in CBC mode.
* Use "ciphertext stealing" technique described on pg. 196
* of "Applied Cryptography" to encrypt the final partial
* (i.e. <16 byte) block if necessary.
*
* jojo: the "ciphertext stealing" requires we read ahead and have
* special handling for the last two blocks. Because of this, the
* output from the TwoFish algorithm is handled internally here.
* It would be better to have a higher level handle this as well as
* CBC mode. Unfortunately, I've mixed the two together, which is
* pretty crappy... The Java version separates these out correctly.
*
* fknobbe: I have reduced the CBC mode to work on memory buffer only.
* Higher routines should use an intermediate buffer and handle
* their output seperately (mainly so the data can be flushed
* in one chunk, not seperate 16 byte blocks...)
*
* @param in The plaintext.
* @param out The ciphertext
* @param size how much to encrypt
* @param tfdata: Pointer to the global data structure containing session keys.
* @return none
*/
void _TwoFish_BlockCrypt(uint8_t *in,uint8_t *out,uint32_t size,int decrypt,TWOFISH *tfdata)
{ uint8_t PnMinusOne[TwoFish_BLOCK_SIZE];
uint8_t CnMinusOne[TwoFish_BLOCK_SIZE];
uint8_t CBCplusCprime[TwoFish_BLOCK_SIZE];
uint8_t Pn[TwoFish_BLOCK_SIZE];
uint8_t *p,*pout;
uint32_t i;
/* here is where we implement CBC mode and cipher block stealing */
if(size==TwoFish_BLOCK_SIZE)
{ /* if we are encrypting, CBC means we XOR the plain text block with the */
/* previous cipher text block before encrypting */
if(!decrypt && tfdata->qBlockDefined)
{ for(p=in,i=0;i<TwoFish_BLOCK_SIZE;i++,p++)
Pn[i]=*p ^ tfdata->qBlockCrypt[i]; /* FK: I'm copying the xor'ed input into Pn... */
}
else
memcpy(Pn,in,TwoFish_BLOCK_SIZE); /* FK: same here. we work of Pn all the time. */
/* TwoFish block level encryption or decryption */
_TwoFish_BlockCrypt16(Pn,out,decrypt,tfdata);
/* if we are decrypting, CBC means we XOR the result of the decryption */
/* with the previous cipher text block to get the resulting plain text */
if(decrypt && tfdata->qBlockDefined)
{ for (p=out,i=0;i<TwoFish_BLOCK_SIZE;i++,p++)
*p^=tfdata->qBlockPlain[i];
}
/* save the input and output blocks, since CBC needs these for XOR */
/* operations */
_TwoFish_qBlockPush(Pn,out,tfdata);
}
else
{ /* cipher block stealing, we are at Pn, */
/* but since Cn-1 must now be replaced with CnC' */
/* we pop it off, and recalculate Cn-1 */
if(decrypt)
{ /* We are on an odd block, and had to do cipher block stealing, */
/* so the PnMinusOne has to be derived differently. */
/* First we decrypt it into CBC and C' */
_TwoFish_qBlockPop(CnMinusOne,PnMinusOne,tfdata);
_TwoFish_BlockCrypt16(CnMinusOne,CBCplusCprime,decrypt,tfdata);
/* we then xor the first few bytes with the "in" bytes (Cn) */
/* to recover Pn, which we put in out */
for(p=in,pout=out,i=0;i<size;i++,p++,pout++)
*pout=*p ^ CBCplusCprime[i];
/* We now recover the original CnMinusOne, which consists of */
/* the first "size" bytes of "in" data, followed by the */
/* "Cprime" portion of CBCplusCprime */
for(p=in,i=0;i<size;i++,p++)
CnMinusOne[i]=*p;
for(;i<TwoFish_BLOCK_SIZE;i++)
CnMinusOne[i]=CBCplusCprime[i];
/* we now decrypt CnMinusOne to get PnMinusOne xored with Cn-2 */
_TwoFish_BlockCrypt16(CnMinusOne,PnMinusOne,decrypt,tfdata);
for(i=0;i<TwoFish_BLOCK_SIZE;i++)
PnMinusOne[i]=PnMinusOne[i] ^ tfdata->prevCipher[i];
/* So at this point, out has PnMinusOne */
_TwoFish_qBlockPush(CnMinusOne,PnMinusOne,tfdata);
_TwoFish_FlushOutput(tfdata->qBlockCrypt,TwoFish_BLOCK_SIZE,tfdata);
_TwoFish_FlushOutput(out,size,tfdata);
}
else
{ _TwoFish_qBlockPop(PnMinusOne,CnMinusOne,tfdata);
memset(Pn,0,TwoFish_BLOCK_SIZE);
memcpy(Pn,in,size);
for(i=0;i<TwoFish_BLOCK_SIZE;i++)
Pn[i]^=CnMinusOne[i];
_TwoFish_BlockCrypt16(Pn,out,decrypt,tfdata);
_TwoFish_qBlockPush(Pn,out,tfdata); /* now we officially have Cn-1 */
_TwoFish_FlushOutput(tfdata->qBlockCrypt,TwoFish_BLOCK_SIZE,tfdata);
_TwoFish_FlushOutput(CnMinusOne,size,tfdata); /* old Cn-1 becomes new partial Cn */
}
tfdata->qBlockDefined=FALSE;
}
}
void _TwoFish_qBlockPush(uint8_t *p,uint8_t *c,TWOFISH *tfdata)
{ if(tfdata->qBlockDefined)
_TwoFish_FlushOutput(tfdata->qBlockCrypt,TwoFish_BLOCK_SIZE,tfdata);
memcpy(tfdata->prevCipher,tfdata->qBlockPlain,TwoFish_BLOCK_SIZE);
memcpy(tfdata->qBlockPlain,p,TwoFish_BLOCK_SIZE);
memcpy(tfdata->qBlockCrypt,c,TwoFish_BLOCK_SIZE);
tfdata->qBlockDefined=TRUE;
}
void _TwoFish_qBlockPop(uint8_t *p,uint8_t *c,TWOFISH *tfdata)
{ memcpy(p,tfdata->qBlockPlain,TwoFish_BLOCK_SIZE );
memcpy(c,tfdata->qBlockCrypt,TwoFish_BLOCK_SIZE );
tfdata->qBlockDefined=FALSE;
}
/* Reset's the CBC flag and zero's PrevCipher (through qBlockPlain) (important) */
void _TwoFish_ResetCBC(TWOFISH *tfdata)
{ tfdata->qBlockDefined=FALSE;
memset(tfdata->qBlockPlain,0,TwoFish_BLOCK_SIZE);
}
void _TwoFish_FlushOutput(uint8_t *b,uint32_t len,TWOFISH *tfdata)
{ uint32_t i;
for(i=0;i<len && !tfdata->dontflush;i++)
*tfdata->output++ = *b++;
tfdata->dontflush=FALSE;
}
void _TwoFish_BlockCrypt16(uint8_t *in,uint8_t *out,bool decrypt,TWOFISH *tfdata)
{ uint32_t x0,x1,x2,x3;
uint32_t k,t0,t1,R;
x0=*in++;
x0|=(*in++ << 8 );
x0|=(*in++ << 16);
x0|=(*in++ << 24);
x1=*in++;
x1|=(*in++ << 8 );
x1|=(*in++ << 16);
x1|=(*in++ << 24);
x2=*in++;
x2|=(*in++ << 8 );
x2|=(*in++ << 16);
x2|=(*in++ << 24);
x3=*in++;
x3|=(*in++ << 8 );
x3|=(*in++ << 16);
x3|=(*in++ << 24);
if(decrypt)
{ x0 ^= tfdata->subKeys[4]; /* swap input and output whitening keys when decrypting */
x1 ^= tfdata->subKeys[5];
x2 ^= tfdata->subKeys[6];
x3 ^= tfdata->subKeys[7];
k = 7+(TwoFish_ROUNDS*2);
for (R = 0; R < TwoFish_ROUNDS; R += 2)
{ t0 = _TwoFish_Fe320( tfdata->sBox, x0);
t1 = _TwoFish_Fe323( tfdata->sBox, x1);
x3 ^= t0 + (t1<<1) + tfdata->subKeys[k--];
x3 = x3 >> 1 | x3 << 31;
x2 = x2 << 1 | x2 >> 31;
x2 ^= t0 + t1 + tfdata->subKeys[k--];
t0 = _TwoFish_Fe320( tfdata->sBox, x2);
t1 = _TwoFish_Fe323( tfdata->sBox, x3);
x1 ^= t0 + (t1<<1) + tfdata->subKeys[k--];
x1 = x1 >> 1 | x1 << 31;
x0 = x0 << 1 | x0 >> 31;
x0 ^= t0 + t1 + tfdata->subKeys[k--];
}
x2 ^= tfdata->subKeys[0];
x3 ^= tfdata->subKeys[1];
x0 ^= tfdata->subKeys[2];
x1 ^= tfdata->subKeys[3];
}
else
{ x0 ^= tfdata->subKeys[0];
x1 ^= tfdata->subKeys[1];
x2 ^= tfdata->subKeys[2];
x3 ^= tfdata->subKeys[3];
k = 8;
for (R = 0; R < TwoFish_ROUNDS; R += 2)
{ t0 = _TwoFish_Fe320( tfdata->sBox, x0);
t1 = _TwoFish_Fe323( tfdata->sBox, x1);
x2 ^= t0 + t1 + tfdata->subKeys[k++];
x2 = x2 >> 1 | x2 << 31;
x3 = x3 << 1 | x3 >> 31;
x3 ^= t0 + (t1<<1) + tfdata->subKeys[k++];
t0 = _TwoFish_Fe320( tfdata->sBox, x2);
t1 = _TwoFish_Fe323( tfdata->sBox, x3);
x0 ^= t0 + t1 + tfdata->subKeys[k++];
x0 = x0 >> 1 | x0 << 31;
x1 = x1 << 1 | x1 >> 31;
x1 ^= t0 + (t1<<1) + tfdata->subKeys[k++];
}
x2 ^= tfdata->subKeys[4];
x3 ^= tfdata->subKeys[5];
x0 ^= tfdata->subKeys[6];
x1 ^= tfdata->subKeys[7];
}
*out++ = (uint8_t)(x2 );
*out++ = (uint8_t)(x2 >> 8);
*out++ = (uint8_t)(x2 >> 16);
*out++ = (uint8_t)(x2 >> 24);
*out++ = (uint8_t)(x3 );
*out++ = (uint8_t)(x3 >> 8);
*out++ = (uint8_t)(x3 >> 16);
*out++ = (uint8_t)(x3 >> 24);
*out++ = (uint8_t)(x0 );
*out++ = (uint8_t)(x0 >> 8);
*out++ = (uint8_t)(x0 >> 16);
*out++ = (uint8_t)(x0 >> 24);
*out++ = (uint8_t)(x1 );
*out++ = (uint8_t)(x1 >> 8);
*out++ = (uint8_t)(x1 >> 16);
*out++ = (uint8_t)(x1 >> 24);
}
/**
* Use (12, 8) Reed-Solomon code over GF(256) to produce a key S-box
* 32-bit entity from two key material 32-bit entities.
*
* @param k0 1st 32-bit entity.
* @param k1 2nd 32-bit entity.
* @return Remainder polynomial generated using RS code
*/
uint32_t _TwoFish_RS_MDS_Encode(uint32_t k0,uint32_t k1)
{ uint32_t i,r;
for(r=k1,i=0;i<4;i++) /* shift 1 byte at a time */
TwoFish_RS_rem(r);
r ^= k0;
for(i=0;i<4;i++)
TwoFish_RS_rem(r);
return r;
}
uint32_t _TwoFish_F32(uint32_t k64Cnt,uint32_t x,uint32_t *k32)
{ uint8_t b0,b1,b2,b3;
uint32_t k0,k1,k2,k3,result = 0;
b0=TwoFish_b0(x);
b1=TwoFish_b1(x);
b2=TwoFish_b2(x);
b3=TwoFish_b3(x);
k0=k32[0];
k1=k32[1];
k2=k32[2];
k3=k32[3];
switch (k64Cnt & 3)
{ case 1: /* 64-bit keys */
result =
TwoFish_MDS[0][(TwoFish_P[TwoFish_P_01][b0] & 0xFF) ^ TwoFish_b0(k0)] ^
TwoFish_MDS[1][(TwoFish_P[TwoFish_P_11][b1] & 0xFF) ^ TwoFish_b1(k0)] ^
TwoFish_MDS[2][(TwoFish_P[TwoFish_P_21][b2] & 0xFF) ^ TwoFish_b2(k0)] ^
TwoFish_MDS[3][(TwoFish_P[TwoFish_P_31][b3] & 0xFF) ^ TwoFish_b3(k0)];
break;
case 0: /* 256-bit keys (same as 4) */
b0 = (TwoFish_P[TwoFish_P_04][b0] & 0xFF) ^ TwoFish_b0(k3);
b1 = (TwoFish_P[TwoFish_P_14][b1] & 0xFF) ^ TwoFish_b1(k3);
b2 = (TwoFish_P[TwoFish_P_24][b2] & 0xFF) ^ TwoFish_b2(k3);
b3 = (TwoFish_P[TwoFish_P_34][b3] & 0xFF) ^ TwoFish_b3(k3);
case 3: /* 192-bit keys */
b0 = (TwoFish_P[TwoFish_P_03][b0] & 0xFF) ^ TwoFish_b0(k2);
b1 = (TwoFish_P[TwoFish_P_13][b1] & 0xFF) ^ TwoFish_b1(k2);
b2 = (TwoFish_P[TwoFish_P_23][b2] & 0xFF) ^ TwoFish_b2(k2);
b3 = (TwoFish_P[TwoFish_P_33][b3] & 0xFF) ^ TwoFish_b3(k2);
case 2: /* 128-bit keys (optimize for this case) */
result =
TwoFish_MDS[0][(TwoFish_P[TwoFish_P_01][(TwoFish_P[TwoFish_P_02][b0] & 0xFF) ^ TwoFish_b0(k1)] & 0xFF) ^ TwoFish_b0(k0)] ^
TwoFish_MDS[1][(TwoFish_P[TwoFish_P_11][(TwoFish_P[TwoFish_P_12][b1] & 0xFF) ^ TwoFish_b1(k1)] & 0xFF) ^ TwoFish_b1(k0)] ^
TwoFish_MDS[2][(TwoFish_P[TwoFish_P_21][(TwoFish_P[TwoFish_P_22][b2] & 0xFF) ^ TwoFish_b2(k1)] & 0xFF) ^ TwoFish_b2(k0)] ^
TwoFish_MDS[3][(TwoFish_P[TwoFish_P_31][(TwoFish_P[TwoFish_P_32][b3] & 0xFF) ^ TwoFish_b3(k1)] & 0xFF) ^ TwoFish_b3(k0)];
break;
}
return result;
}
uint32_t _TwoFish_Fe320(uint32_t *lsBox,uint32_t x)
{ return lsBox[ TwoFish_b0(x)<<1 ]^
lsBox[ ((TwoFish_b1(x)<<1)|1)]^
lsBox[0x200+ (TwoFish_b2(x)<<1) ]^
lsBox[0x200+((TwoFish_b3(x)<<1)|1)];
}
uint32_t _TwoFish_Fe323(uint32_t *lsBox,uint32_t x)
{ return lsBox[ (TwoFish_b3(x)<<1) ]^
lsBox[ ((TwoFish_b0(x)<<1)|1)]^
lsBox[0x200+ (TwoFish_b1(x)<<1) ]^
lsBox[0x200+((TwoFish_b2(x)<<1)|1)];
}
uint32_t _TwoFish_Fe32(uint32_t *lsBox,uint32_t x,uint32_t R)
{ return lsBox[ 2*TwoFish__b(x,R ) ]^
lsBox[ 2*TwoFish__b(x,R+1)+1]^
lsBox[0x200+2*TwoFish__b(x,R+2) ]^
lsBox[0x200+2*TwoFish__b(x,R+3)+1];
}
#endif
/* ******************************************* */
#if defined TWOFISH_UNIT_TEST
#include <stdio.h>
#define TEST_DATA_SIZE 327
int main(int argc, char* argv[])
{
int i;
int n;
char outbuf[4096];
char * outp = outbuf;
uint8_t key[] = { 0xfc, 0x77, 0x1a, 0xda, 0xaa };
TWOFISH *tfa = TwoFishInit( key, 5 );
TWOFISH *tfb = TwoFishInit( key, 5 );
uint8_t out[2048], out2[2048];
uint8_t in[TEST_DATA_SIZE];
for ( i=0; i<TEST_DATA_SIZE; ++i )
{
in[i] = rand() & 0xff;
}
outp=outbuf;
for ( i=0; i<TEST_DATA_SIZE; ++i )
{
n = snprintf( outp, 10, "0x%02x ", (in[i]) );