-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathgpuuebdecls.cpp
644 lines (612 loc) · 24.5 KB
/
gpuuebdecls.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
#include "gpuuebpgdecls.h"
uebCell::uebCell(const char* inpFile, int startDate[3], int endDate[3], double startHour, double endHour, double modeldT,
double UTCoffset, int inpDailyorSubd, int oStride)
{
float siteVarInitcondefaults[32] = { 0.0, 0.0, 0.0, 0.0, 1.0, 100000.0, 0.1, 0.0, 0.0,
0.0, 6.6, 1.0, 0.0, 0.0, 0.0, 0.0, 0.25, 0.98, 5.712903,
4.350000, 6.890322, 8.660001, 8.938710, 10.010000, 9.541936,
9.038710, 7.160001, 8.106450, 5.923332, 5.058064, -9999.0, 111.00 };
float paramArr[32];
setConstantValues();
//set parameters
readParams(inpFile, paramArr);
/*cout<<"param read..\n ");
for(int i=0;i<npar;i++)
cout<<"%f ",parvalArray[i]); */
setParams(paramArr);
//model run settings
setModelRun_Settings(startDate, endDate, startHour, endHour, modeldT, UTCoffset, inpDailyorSubd, oStride);
//site vars and intitial conditions
setSiteVars_and_Initconds(siteVarInitcondefaults);
//cout<<"UEBCell initialized"<<endl;
}
uebCell::uebCell()
{
float paramDefaults[32] = {0, 0, 3, -1, 0.98, 2.09, 2, 0.01, 337, 1700, 0.05, 20, 0.1, 0.85,
0.65, 0.278, 1.11, 0.0654, 1, 0.001, 0.98, 0.5, 0, 0.5, 0.004626286,
0.25, 0.5, 0.857143, 0.16, 0.5, 0.8, 2.4 };
float siteVarInitcondefaults[32] = { 0.0, 0.0, 0.0, 0.0, 1.0, 100000.0, 0.1, 0.0, 0.0,
0.0, 6.6, 1.0, 0.0, 0.0, 0.0, 0.0, 0.25, 0.98, 5.712903,
4.350000, 6.890322, 8.660001, 8.938710, 10.010000, 9.541936,
9.038710, 7.160001, 8.106450, 5.923332, 5.058064, -9999.0, 111.00 };
setConstantValues();
setParams(paramDefaults);
//model run settings
//Default run settings
int startDate[3] = { 2009, 10, 1 }, endDate[3] = { 2010, 6, 1 };
double startHour = 0.0, endHour = 0.0, modeldT = 1.0, UTCoffset = -7;
int inpDailyorSubd = 0, outStride = 4; //0 subdaily input
setModelRun_Settings(startDate, endDate, startHour, endHour, modeldT, UTCoffset, inpDailyorSubd, outStride);
//site vars and intitial conditions
setSiteVars_and_Initconds(siteVarInitcondefaults);
//cout<<"UEBCell initialized"<<endl;
}
/*
uebCell::uebCell(uebCell& uCell0)
{
setConstantValues();
setParams(uCell0.paramValues);
//site vars and intitial conditions
setSiteVars_and_Initconds(uCell0.statesiteValues);
//model run settings
setModelRun_Settings(uCell0.modelStartDate, uCell0.modelEndDate, uCell0.modelStartHour, uCell0.modelEndHour, uCell0.modelDT, uCell0.UTCOffset, uCell0.inpDailyorSubdaily, uCell0.outtStride);
nstepinaDay = uCell0.nstepinaDay;
if (uCell0.tsprevday)
{
tsprevday = new float[nstepinaDay];
// Initialize Tsbackup and TaveBackup
for (int i = 0; i < nstepinaDay; i++)
{
tsprevday[i] = uCell0.tsprevday[i];
}
}
else tsprevday = NULL;
if (uCell0.taveprevday)
{
taveprevday = new float[nstepinaDay];
for (int i = 0; i< nstepinaDay; i++)
{
taveprevday[i] = uCell0.taveprevday[i];
}
}
else taveprevday = NULL;
}
uebCell& uebCell::operator= (uebCell& uCell0)
{
if (this != &uCell0)
{
setConstantValues();
setParams(uCell0.paramValues);
//site vars and intitial conditions
setSiteVars_and_Initconds(uCell0.statesiteValues);
//model run settings
setModelRun_Settings(uCell0.modelStartDate, uCell0.modelEndDate, uCell0.modelStartHour, uCell0.modelEndHour, uCell0.modelDT, uCell0.UTCOffset, uCell0.inpDailyorSubdaily, uCell0.outtStride);
nstepinaDay = uCell0.nstepinaDay;
delete[] tsprevday;
delete[] taveprevday;
if (uCell0.tsprevday)
{
tsprevday = new float[nstepinaDay];
// Initialize Tsbackup and TaveBackup
for (int i = 0; i < nstepinaDay; i++)
{
tsprevday[i] = uCell0.tsprevday[i];
}
}
else tsprevday = NULL;
if (uCell0.taveprevday)
{
taveprevday = new float[nstepinaDay];
for (int i = 0; i< nstepinaDay; i++)
{
taveprevday[i] = uCell0.taveprevday[i];
}
}
else taveprevday = NULL;
}
return *this;
}*/
uebCell::~uebCell()
{
/*delete []tsprevday;
delete []taveprevday;
tsprevday = NULL;
taveprevday = NULL;*/
/*for(int i=0; i<72;i++)
delete[] OutVarValues[i];
delete []OutVarValues;*/
}
__host__ __device__ void uebCell::setConstantValues()
{
//defalut is accumulation zone is false
accumulationZone = false;
//initialize
T_0 = 0.0; // Temperature of freezing (0 C)
T_k = 273.15; // Temperature to convert C to K (273.15)
SB_c = 2.041334e-7; // Stefan boltzman constant (2.041334e-7 KJ/m^2-hr-K^4) #corrected 12.23.14
H_f = 333.5; // Heat of fusion (333.5 KJ= kg)
Hne_u = 2834.0; // Heat of Vaporization (Ice to Vapor, 2834 KJ= kg)
C_w = 4.18; // Water Heat Capacity (4.18 KJ/ kg-C)
C_s = 2.09; // Ice heat capacity (2.09 KJ= kg= C)
C_p = 1.005; // Air Heat Capacity (1.005 KJ= kg= K)
Ra_g = 287.0; // Ideal Gas constant for dry air (287 J= kg= K)
K_vc = 0.4; // Von Karmans constant (0.4)
Hs_f = 3600.0; // Factor to convert = s into = hr (3600)
Rho_i = 917.0; // Density of Ice (917 kg= m^3)
Rho_w = 1000.0; // Density of Water (1000 kg= m^3)
Gra_v = 9.81; // Gravitational acceleration (9.81 m= s^2)
W1da_y = 0.261799; // Daily frequency (2pi= 24 hr 0.261799 radians= hr)
Io = 4914.0; // Solar constant Kj/m^2/hr
//pi copied from snowdxv.f90
P_i = 3.141592653589793238462643383279502884197169399375105820974944592308; // Pi
//data for pred-corr
wtol = 0.025;
utol = 2000.0;
//from TURBFLUX()
tol = 0.001;
nitermax = 20;
ncitermax = 21;
// flag to write warnings,...etc
snowdgtvariteflag = 0;
snowdgtvariteflag2 = 0; // 0;
snowdgtvariteflag3 = 0;
snowdgt_outflag = 0;
radwarnflag = 0;
inpDailyorSubdaily = 0; // 0: values given at each (sub-daily time steps); 1: daily values
uebCellX = 0;
uebCellY = 0;
Tsk_save = 273.16, Tssk_old = 273.16, Tsavek_old = 273.16, Tsavek_ave = 273.16, Tssk_ave = 273.16/*added 6.7.13*/;
//## these were copied from snowdgtv, not clear where they are being used
/*fStab = -9999;
Tref = -9999;
iTsMethod = 4;
//#_This is not clear 8.28.13
windfl = 0; */
return;
}
// functions to read params
void uebCell::readParams(const char* inpFile, float Params[32])
{
ifstream pinFile(inpFile);
char headerLine[256];
pinFile.getline(headerLine, 256, '\n'); //skip header
for (int i = 0; i < 32; i++)
{
pinFile.getline(headerLine, 256, '\n');
pinFile.getline(headerLine, 256, '\n');
sscanf(headerLine, "%f ", &Params[i]);
}
pinFile.close();
return;
}
__host__ __device__ void uebCell::setParams(float Params[32])
{
//copy params class variables
for (int i = 0; i < 32; i++)
paramValues[i] = Params[i];
/*irad = (int) Params[0];
ireadalb=(int)Params[1];
Tr = Params[2]; // Temperature above which all is rain [3 C];
Ts = Params[3]; // Temperature below which all is snow [-1 C];
Ems= Params[4]; // emmissivity of snow [nominally 0.99];
Cg = Params[5]; // Ground heat capacity [nominally 2.09 KJ/kg/C];
z = Params[6]; // Nominal meas. height for air temp. and humidity [2m];
Zo = Params[7]; // Surface aerodynamic roughness [m];
Rho = Params[8]; // Snow Density [Nominally 450 kg/m^3];
Rhog = Params[9]; // Soil Density [nominally 1700 kg/m^3];
Lc = Params[10]; // Liquid holding capacity of snow [0.05];
Ks = Params[11]; // Snow Saturated hydraulic conductivity [20 m/hr];
De = Params[12]; // Thermally active depth of soil [0.1 m];
Avo=Params[13]; // Visual new snow albedo [0.95];
Anir0=Params[14]; // NIR new snow albedo [0.65];
Lans= Params[15]; // the thermal conductivity of fresh [dry]; snow [0.0576 kJ/m/k/hr]; [Vinod// 0.36 Ref: Snow and Climate :Richard L Armstrong and Eric Brun ];
Lang= Params[16]; // the thermal conductivity of soil [:9.68 kJ/m/k/hr]; [TK of ice or wet soil[2.22~ 3.48W/m/k];:Vinod];
Wlf= Params[17]; // Low frequency fluctuation in deep snow/soil layer [1/4 w1 = 0.0654 radian/hr];
Rd1= Params[18]; // Apmlitude correction coefficient of heat conduction [1];
dNewS=Params[19]; // The threshold depth of for new snow [0.001 m];
// 7 Parameters added for canopy
EmC = Params[20]; // Emissivity of canopy
Alpha = Params[21]; // Scattering coefficient for solar radiation
AlphaL = Params[22]; // Scattering coefficient for long wave radiation
Gpar = Params[23]; // leaf orientation with respect to zenith angle
Uc = Params[24]; // Unloading rate coefficient [Per hour]; [Hedstrom and pomeroy; 1998];
As = Params[25]; // Fraction of extraterrestaial radiation on cloudy day;Shuttleworth [1993];
Bs = Params[26]; // [as+bs];:Fraction of extraterrestaial radiation on clear day; Shuttleworth [1993];
Lambda = Params[27]; // Ratio of direct atm radiation to diffuse;worked out from Dingman [1993];
Rimax = Params[28]; // Maximum value of Richardsion number for stability corretion
Wcoeff = Params[29]; // Wind decay coefficient for the forest
Bca = Params[30]; //A in Bristow-Campbell formula for atmospheric transmittance
Bcc = Params[31];*/
//5.2.15 from snowdv
// Mapping from parameters read to UEB internal interpretation which follows UEBVeg scheme
irad = (int)paramValues[0];
ireadalb = (int)paramValues[1];
for (int i = 0; i<11; i++)
Param[i] = paramValues[i + 2];
for (int i = 12; i<18; i++)
Param[i] = paramValues[i + 1];
Param[18] = -9999;
Param[19] = -9999;
Param[20] = paramValues[19];
for (int i = 22; i<32; i++)
Param[i] = paramValues[i - 2];
bca = paramValues[30];
bcc = paramValues[31];
return;
}
//copy site variables and state intitial conditions at a grid (ueb cell)
__host__ __device__ void uebCell::setSiteVars_and_Initconds(float SiteVars[32])
{
for (int i = 0; i < 32; i++)
statesiteValues[i] = SiteVars[i];
//copy initial conditions
/*Usic = SiteVars[0];
Wsic = SiteVars[1];
dlSageic = SiteVars[2];
Wcic = SiteVars[3];
//Tcic = SiteVars[4];
refDepthic = SiteVars[4];
totalRefDepthic = SiteVars[5];
Qg = SiteVars[6];
//copy site variables at each grid poitn
dF = SiteVars[7], // Drift factor
APr = SiteVars[8], // Atmospheric Pressure [Pa],
Aep = SiteVars[9], // Albedo extinction parameter to smooth
// transition of albedo when snow is shallow. Depends on Veg. height [m],
// 7 Site Variables added for canopy
Cc = SiteVars[10], // Canopy Coverage
Hcan = SiteVars[11], // Canopy height
LAI = SiteVars[12], // Leaf Area Index
Sbar = SiteVars[13], // Maximum snow load held per unit branch area[Kg/m2 for Pine],
Ycage = (int)SiteVars[14]; // Parameters for wind speed transformation
// Ycage=1 for young pine Should be in parameters
// Ycage=2 for Leafed deciduous
// Ycage=3 for Old pine with logn stems (Paw U and Meyers, 1987)-- Requires for wind speed transformation
Slope = SiteVars[15]; //slope
Azi = SiteVars[16]; //aspect
lat = SiteVars[17]; //latitude
Subalb = SiteVars[18]; //Substrate albedo
Subtype = (int)SiteVars[19]; //substrate type beneath snow
//0 = Ground/Non Glacier, 1=Clean Ice/glacier,
//2= Debris covered ice/glacier, 3= Glacier snow accumulation zone
Gsurf = SiteVars[20]; //The fraction of surface melt that runs off (e.g. from a glacier)
ts_last = SiteVars[33]; //????
lon = SiteVars[34]; //Longitude
for (int i = 0; i<12; i++) //Bristow-Campbell B for each month
dtBcb[i] = SiteVars[i + 21];*/
//==============================================changes for new conf 5.1.15
//from snowdv
//copied from paramsiteinitial
for (int i = 0; i<4; i++)
statev[i] = statesiteValues[i];
sitev[0] = statesiteValues[4];
sitev[1] = statesiteValues[5];
for (int i = 3; i<9; i++)
sitev[i] = statesiteValues[i + 3];
slope = statesiteValues[12];
azi = statesiteValues[13];
lat = statesiteValues[14];
Param[11] = statesiteValues[15];
//subalb=statesiteValues[15]
sitev[9] = statesiteValues[16];
subtype = (int)statesiteValues[16];
Param[21] = statesiteValues[17];
//gsurf = statesiteValues[17]
for (int i = 0; i<12; i++)
dtbar[i] = statesiteValues[i + 18];
ts_last = statesiteValues[30];
lon = statesiteValues[31];
if (subtype == 0 || subtype == 3)
WGT = 0.0;
else
WGT = 1.0;
if (subtype != 3) // Only do this work for non accumulation cells where model is run
{
// Initialize Tsbackup and TaveBackup
for (int i = 0; i< nstepinaDay; i++)
{
tsprevday[i] = -9999.0;
taveprevday[i] = -9999.0;
}
// Take surface temperature as 0 where it is unknown the previous time step
// This is for first day of the model to get the force restore going
//#$#$#$#$#_is this all the time steps or the last time?
if (ts_last <= -9999)
//for(int i =0;i< nstepinaDay;i++)
tsprevday[nstepinaDay - 1] = 0;
else
//for(int i =0;i< nstepinaDay;i++)
tsprevday[nstepinaDay - 1] = ts_last;
// compute Ave.Temp for previous day
Us = statev[0]; // Ub in UEB
Ws = statev[1]; // W in UEB
Wc = statev[3]; // Canopy SWE
Apr = sitev[1]; // Atm. Pressure [PR in UEB]
cg = Param[3]; // Ground heat capacity [nominally 2.09 KJ/kg/C]
rhog = Param[7]; // Soil Density [nominally 1700 kg/m^3]
de = Param[10]; // Thermally active depth of soil (0.1 m)
//this are for coudiness computation
//6.10.13
as = Param[27];
bs = Param[28];
tave = TAVG(Us, Ws + WGT, Rho_w, C_s, T_0, rhog, de, cg, H_f);
//for(int i =0;i< nstepinaDay;i++)
taveprevday[nstepinaDay - 1] = tave;
// initialize variables for mass balance
Ws1 = statev[1];
Wc1 = statev[3];
cumP = 0.0;
cumEs = 0.0;
cumEc = 0.0;
cumMr = 0.0;
cumGm = 0.0;
cumEg = 0.0;
} // end the skip block done only for accumulation cells
Tmin = 0.0;
Tmax = 0.0;
return;
}
__host__ __device__ void uebCell::setModelRun_Settings(int startDate[3], int endDate[3], double startHour, double endHour, double modeldT, double UTCoffset, int inpDailyorSubd, int oStride)
{
for (int i = 0; i<3; i++)
{
modelStartDate[i] = startDate[i];
modelEndDate[i] = endDate[i];
}
modelStartHour = startHour;
modelEndHour = endHour;
modelDT = modeldT;
UTCOffset = UTCoffset;
inpDailyorSubdaily = inpDailyorSubd;
//model time steps
modelSpan = julian(modelEndDate[0], modelEndDate[1], modelEndDate[2], modelEndHour) - julian(modelStartDate[0], modelStartDate[1], modelStartDate[2], modelStartHour); //no of days in model span
numTimeStep = (int)ceil(modelSpan*(24 / modelDT));
//5.2.15 from snowdv
// FIXME: what if the result is fractional
// time steps must divide exactly in to a day because we use logic that requires the values from the same time
// step on the previous day. Consider in future making the specification of time step as number of time
// steps in a day, not modeldt to ensure this modeldt is recalculated based on the int timesteps in a day
// assumption: number of model timesteps in a day must be an int
/*stepinaDay= (int) (24.0/modelDT +0.5); // closest rounding
modelDT = 24.0/stepinaDay;
nstepinaDay = stepinaDay;
tsprevday = new float[nstepinaDay];
taveprevday = new float[nstepinaDay]; */
// assumption: number of model timesteps in a day must be an int
nstepinaDay = (int)(24.0 / modelDT + 0.5); // closest rounding
modelDT = 24.0 / nstepinaDay;
if (inpDailyorSubdaily == 0)
numSimTimeSteps = 24;
else
numSimTimeSteps = 24 * nstepinaDay;
for (int i = 0; i < 13; i++)
{
startIndex[i] = 0;
ncReadStart[i] = 0;
}
tEnd = 0;
outtStride = oStride;
timeSeriesIndex = 0; //this changes to 1 when a forcing that is applicable for the whole model is read - --- forcing time series from text file need to be read only once
//allocate memory for output array
//OutVarValues = new float *[70];
//for (int i = 0; i < 70; i++)
//OutVarValues = new float[70*numTimeStep]; // *outtStride];
//cout << "number of t " << numTimeStep << endl;
/*tsprevday.clear();
tsprevday.resize(nstepinaDay);
taveprevday.clear();
taveprevday.resize(nstepinaDay);
for (int i = 0; i < nstepinaDay; i++)
{
tsprevday[i] = -9999.0;
taveprevday[i] = -9999.0;
} */
// 5.2.15 from snowdv
// calculating model end date-time in julian date
dHour = modelEndHour;
EJD = julian(modelEndDate[0], modelEndDate[1], modelEndDate[2], dHour);
return;
}
// function to read forcing / weather variables control file
void uebCell::readInputForContr(const char* inputconFile)
{
ifstream pinFile(inputconFile);
char headerLine[256];
//istringstream valueLine;
pinFile.getline(headerLine, 256); //skip header
for (int i = 0; i<13; i++)
{
pinFile.getline(headerLine, 256, ':');
sscanf(headerLine, "%s ", &infrContArr[i].infName);
pinFile.getline(headerLine, 256, '\n');
pinFile.getline(headerLine, 256, '\n');
sscanf(headerLine, "%d ", &infrContArr[i].infType);
//headerLine[0] = 0;
//fscanf(pinFile,"%d\n",&svArr[i].svType);
switch (infrContArr[i].infType)
{
case -1:
pinFile.getline(headerLine, 256, '\n');
sscanf(headerLine, "%f ", &infrContArr[i].infdefValue);
break;
case 0:
pinFile.getline(headerLine, 256, '\n');
sscanf(headerLine, "%s ", &infrContArr[i].infFile);
break;
case 1:
pinFile.getline(headerLine, 256, '\n');
sscanf(headerLine, "%s %s %s %d", &infrContArr[i].infFile, &infrContArr[i].infvarName, &infrContArr[i].inftimeVar, &infrContArr[i].numNcfiles);
break;
case 2:
pinFile.getline(headerLine, 256, '\n');
sscanf(headerLine, "%f ", &infrContArr[i].infdefValue);
break;
default:
cout << "Wrong input/forcing type; has to be -1 (compute by the model), 2 (single value) , 0 (time-series text file) or 1 (3D netcdf)" << endl;
cout << "Using default value..." << endl;
break; //exit(1);
}
//i++;
//headerLine[0] = 0;
//}
}
pinFile.close();
return;
}
void uebCell::getInpForcArr(int numNc[13], float*** RegArray[13], int ncTotaltimestep[13], MPI::Intracomm inpComm, MPI::Info inpInfo)
{
for (int it = 0; it < 13; it++)
{
if (infrContArr[it].infType == 0)
{
/*if (numNc == 0) // for time series from text file read once ---- outside of this function
{
RegArray[it] = new float**[1];
RegArray[it][0] = new float *[1];
readTStextFile(infrContArr[it].infFile, RegArray[it][0][0], ncTotaltimestep[it]); //tsvarArray[it][0] 3.19.15 ntimesteps[0] 12.18.14
}*/
}
else if (infrContArr[it].infType == 2 || infrContArr[it].infType == -1)
{
// use default value or compute internally
}
else if (infrContArr[it].infType == 1) // == 0
{
tEnd = ncReadStart[it] + 24;
//offSet = 1; // uebCellY*dimLen2*numTimeStep + uebCellX*numTimeStep;
int retvalue = 0;
//read 3D netcdf (regridded array processed by uebInputs)
char numtoStr[256];
sprintf(numtoStr, "%d", numNc[it]);
char tsInputfile[256];
strcpy(tsInputfile, infrContArr[it].infFile);
strcat(tsInputfile, numtoStr);
strcat(tsInputfile, ".nc");
//cout<<"%s\n",tsInputfile);
//clear existing memory RegArray[it] before passing to this function // delete[] RegArray[it];
readNC_yxSlub(tsInputfile, infrContArr[it].infvarName, infrContArr[it].inftimeVar, ncReadStart[it], tEnd, RegArray[it], ncTotaltimestep[it], numNc[it], inpComm, inpInfo);
//startIndex[it] = 0;
//endIndex[it] = ncTotaltimestep[it];
//cout << "nc time = " << ncNtimestes[it][numNc];
}
}
}
void uebCell::updateInpForcArr(float*** RegArray[13], int ncTotaltimestep[13])
{
setInpForcArr(0, RegArray[0], PrecArr, ncTotaltimestep[0]);
setInpForcArr(1, RegArray[1], TempArr, ncTotaltimestep[1]);
setInpForcArr(2, RegArray[2], TaminArr, ncTotaltimestep[2]);
setInpForcArr(3, RegArray[3], TamaxArr, ncTotaltimestep[3]);
setInpForcArr(4, RegArray[4], WindspArr, ncTotaltimestep[4]);
setInpForcArr(5, RegArray[5], RhArr, ncTotaltimestep[5]);
setInpForcArr(6, RegArray[6], VpArr, ncTotaltimestep[6]);
setInpForcArr(7, RegArray[7], ApresArr, ncTotaltimestep[7]);
setInpForcArr(8, RegArray[8], SradArr, ncTotaltimestep[8]);
setInpForcArr(9, RegArray[9], LradArr, ncTotaltimestep[9]);
setInpForcArr(10, RegArray[10], NradArr, ncTotaltimestep[10]);
setInpForcArr(11, RegArray[11], QgArr, ncTotaltimestep[11]);
setInpForcArr(12, RegArray[12], SnowalbArr, ncTotaltimestep[12]);
}
void uebCell::setInpForcArr(int it, float ***inArray, float* forcArr, int ncTotaltimestepit)
{
//need to call each variable array as each array has to be copied separately to device array in cuda
int tsLength = 24; //default length
if (infrContArr[it].infType == 0)
{
if (ncTotaltimestepit - startIndex[it] < tsLength)
tsLength = ncTotaltimestepit - startIndex[it]; //make sure not to go out of array bound
if (inpDailyorSubdaily == 0)
{
if (numSimTimeSteps > tsLength)
numSimTimeSteps = tsLength; // use the smallest number of time steps
}
else
{
if (numSimTimeSteps > (tsLength * nstepinaDay))
numSimTimeSteps = tsLength * nstepinaDay; // use the smallest number of time steps
}
for (int i = 0; i < tsLength; i++)
forcArr[i] = inArray[0][0][startIndex[it] + i];
startIndex[it] += tsLength;
}
else if (infrContArr[it].infType == 2 || infrContArr[it].infType == -1)
{
// use default value or compute internally
}
else if (infrContArr[it].infType == 1) // == 0
{
if (ncTotaltimestepit - startIndex[it] < tsLength)
tsLength = ncTotaltimestepit - startIndex[it]; //make sure not to go out of array bound
if (inpDailyorSubdaily == 0)
{
if (numSimTimeSteps > tsLength)
numSimTimeSteps = tsLength; // use the smallest number of time steps
}
else
{
if (numSimTimeSteps > (tsLength * nstepinaDay))
numSimTimeSteps = tsLength * nstepinaDay; // use the smallest number of time steps
}
for (int i = 0; i < tsLength; i++)
forcArr[i] = inArray[uebCellY][uebCellX][startIndex[it] + i];
startIndex[it] = 0; // +tsLength;
}
}
//print all output values at a point
void uebCell::printPointOutputs(const char* outFileName)
{
FILE* outFile = fopen(outFileName,"a"); //can write multiple times appending at the end
for (int istep = 0; istep < numSimTimeSteps - 1; istep++) //-2 to be safe againts ceil( ) in computeModelDateTime()
{
fprintf(outFile, " %d %d %d %8.3f ", (int)OutVarValues[0][istep], (int)OutVarValues[1][istep], (int)OutVarValues[2][istep], OutVarValues[3][istep]);
for (int vnum = 4; vnum <70; vnum++)
fprintf(outFile, " %16.4f ", OutVarValues[vnum][istep]);
}
fclose(outFile);
}
//print values at a point for degugging
void uebCell::printDebugOutputs()
{
char testPrint[256];
char ind[256];
strcpy(testPrint, "ZTest");
sprintf(ind, "%d", uebCellY);
strcat(testPrint, ind);
strcat(testPrint, "_");
sprintf(ind, "%d", uebCellX);
strcat(testPrint, ind);
strcat(testPrint, ".txt");
FILE* outFile = fopen(testPrint, "a");
for (int istep = 0; istep < numSimTimeSteps - 1; istep++) //-2 to be safe againts ceil( ) in computeModelDateTime()
{
fprintf(outFile, " %d %d %d %8.3f ", (int)OutVarValues[0][istep], (int)OutVarValues[1][istep], (int)OutVarValues[2][istep], OutVarValues[3][istep]);
for (int vnum = 4; vnum < 70; vnum++)
fprintf(outFile, " %16.4f ", OutVarValues[vnum][istep]);
}
fclose(outFile);
}
//print SWE (snow water equivalent), Us (Energy content), P(recipitation) and Ta(Temperature) at a point
void uebCell::printSampleOutputs(const char* outFileName)
{
FILE* outFile = fopen(outFileName,"a");
for (int istep = 0; istep < numSimTimeSteps - 1; istep++) //-2 to be safe againts ceil( ) in computeModelDateTime()
fprintf(outFile, "%d %d %d %8.3f %16.4f %16.4f %16.4f %16.4f %16.4f %16.4f\n", (int)OutVarValues[0][istep], (int)OutVarValues[1][istep], (int)OutVarValues[2][istep], OutVarValues[3][istep],
OutVarValues[12][istep], OutVarValues[13][istep], OutVarValues[16][istep], OutVarValues[17][istep], OutVarValues[18][istep], OutVarValues[19][istep]);
fclose(outFile);
}
__host__ __device__ int findMax(int a, int b)
{
return (a>b)?a:b;
}
__host__ __device__ int findMin(int a, int b)
{
return (a<b)?a:b;
}
__host__ __device__ float findMax(float a, float b)
{
return (a>b)?a:b;
}
__host__ __device__ float findMin(float a, float b)
{
return (a<b)?a:b;
}