diff --git a/pygam/penalties.py b/pygam/penalties.py index aee1d2a0..5ec4571c 100644 --- a/pygam/penalties.py +++ b/pygam/penalties.py @@ -211,6 +211,58 @@ def concave(n, coef): """ return convexity_(n, coef, convex=False) +def positive(n, coef): + """ + Builds a penalty matrix for P-Splines with continuous features. + Penalizes violation of a positive feature function. + + Parameters + ---------- + n : int + number of splines + coef : array-like + coefficients of the feature function + + Returns + ------- + penalty matrix : sparse csc matrix of shape (n,n) + """ + if n != len(coef.ravel()): + raise ValueError('dimension mismatch: expected n equals len(coef), '\ + 'but found n = {}, coef.shape = {}.'\ + .format(n, coef.shape)) + # only penalize the case where coef_i-1 < 0 + mask = sp.sparse.diags((coef.ravel() < 0).astype(float)) + + D = sp.sparse.identity(n).tocsc() * mask + return D.dot(D.T).tocsc() + +def negative(n, coef): + """ + Builds a penalty matrix for P-Splines with continuous features. + Penalizes violation of a negative feature function. + + Parameters + ---------- + n : int + number of splines + coef : array-like + coefficients of the feature function + + Returns + ------- + penalty matrix : sparse csc matrix of shape (n,n) + """ + if n != len(coef.ravel()): + raise ValueError('dimension mismatch: expected n equals len(coef), '\ + 'but found n = {}, coef.shape = {}.'\ + .format(n, coef.shape)) + # only penalize the case where coef_i-1 > 0 + mask = sp.sparse.diags((coef.ravel() > 0).astype(float)) + + D = sp.sparse.identity(n).tocsc() * mask + return D.dot(D.T).tocsc() + # def circular(n, coef): # """ # Builds a penalty matrix for P-Splines with continuous features. @@ -341,5 +393,7 @@ def sparse_diff(array, n=1, axis=-1): 'concave': concave, 'monotonic_inc': monotonic_inc, 'monotonic_dec': monotonic_dec, + 'positive': positive, + 'negative': negative, 'none': none } diff --git a/pygam/tests/test_penalties.py b/pygam/tests/test_penalties.py index 68037619..8184911c 100644 --- a/pygam/tests/test_penalties.py +++ b/pygam/tests/test_penalties.py @@ -11,6 +11,8 @@ from pygam.penalties import monotonic_dec from pygam.penalties import convex from pygam.penalties import concave +from pygam.penalties import positive +from pygam.penalties import negative from pygam.penalties import none from pygam.penalties import wrap_penalty @@ -107,6 +109,35 @@ def test_concave(hepatitis_X_y): diffs = np.diff(Y, n=2) assert(((diffs <= 0) + np.isclose(diffs, 0.)).all()) +def test_positive(hepatitis_X_y): + """ + check that positive constraint produces positive function + """ + X, y = hepatitis_X_y + + gam = LinearGAM(terms=s(0, constraints='positive')) + gam.fit(X, y) + + XX = gam.generate_X_grid(term=0) + Y = gam.predict(np.sort(XX)) + assert(((Y >= 0) + np.isclose(Y, 0.)).all()) + +def test_negative(hepatitis_X_y): + """ + check that negative constraint produces positive function + """ + X, y = hepatitis_X_y + # invert sign to be able to fit negative function + X = -X + y = -y + + gam = LinearGAM(terms=s(0, constraints='negative')) + gam.fit(X, y) + + XX = gam.generate_X_grid(term=0) + Y = gam.predict(np.sort(XX)) + assert(((Y <= 0) + np.isclose(Y, 0.)).all()) + # TODO penalties gives expected matrix structure # TODO circular constraints