-
Notifications
You must be signed in to change notification settings - Fork 9
/
india.cpp
129 lines (110 loc) · 3.96 KB
/
india.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
#include <iostream>
#include <vector>
#include <tuple>
#include <algorithm>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/cycle_canceling.hpp>
#include <boost/graph/push_relabel_max_flow.hpp>
#include <boost/graph/successive_shortest_path_nonnegative_weights.hpp>
#include <boost/graph/find_flow_cost.hpp>
// Graph Type with nested interior edge properties for Cost Flow Algorithms
typedef boost::adjacency_list_traits<boost::vecS, boost::vecS, boost::directedS> traits;
typedef boost::adjacency_list<boost::vecS, boost::vecS, boost::directedS, boost::no_property,
boost::property<boost::edge_capacity_t, long,
boost::property<boost::edge_residual_capacity_t, long,
boost::property<boost::edge_reverse_t, traits::edge_descriptor,
boost::property <boost::edge_weight_t, long> > > > > graph;
typedef boost::graph_traits<graph>::edge_descriptor edge_desc;
typedef boost::graph_traits<graph>::out_edge_iterator out_edge_it;
// Custom edge adder class
class edge_adder {
graph &G;
public:
explicit edge_adder(graph &G) : G(G) {}
void add_edge(int from, int to, long capacity, long cost) {
//std::cout << from << " -> " << to << ": capacity = " << capacity << ", cost = " << cost << std::endl;
auto c_map = boost::get(boost::edge_capacity, G);
auto r_map = boost::get(boost::edge_reverse, G);
auto w_map = boost::get(boost::edge_weight, G); // new!
const edge_desc e = boost::add_edge(from, to, G).first;
const edge_desc rev_e = boost::add_edge(to, from, G).first;
c_map[e] = capacity;
c_map[rev_e] = 0; // reverse edge has no capacity!
r_map[e] = rev_e;
r_map[rev_e] = e;
w_map[e] = cost; // new assign cost
w_map[rev_e] = -cost; // new negative cost
}
};
using namespace std;
struct elephant {
int x, y, cost, capacity;
};
// Compute max flow min cost given a limit for the flow
tuple<int, int> flowAndCost(int n, int start, int end, vector<elephant> &elephants, int flowLimit, int budget) {
graph G(n);
edge_adder adder(G);
auto c_map = boost::get(boost::edge_capacity, G);
auto rc_map = boost::get(boost::edge_residual_capacity, G);
for (auto e : elephants) {
adder.add_edge(e.x, e.y, e.capacity, e.cost);
}
int source = boost::add_vertex(G);
int target = boost::add_vertex(G);
adder.add_edge(source, start, flowLimit, 0);
adder.add_edge(end, target, flowLimit, 0);
boost::successive_shortest_path_nonnegative_weights(G, source, target);
int flow = 0;
out_edge_it e, eend;
for(boost::tie(e, eend) = boost::out_edges(boost::vertex(source,G), G); e != eend; ++e) {
flow += c_map[*e] - rc_map[*e];
}
int cost = boost::find_flow_cost(G);
return {flow, cost};
}
// Check if it is feasible to transport numSuitcases suitcases
bool isFeasible(int n, int start, int end, vector<elephant> &elephants, int numSuitcases, int budget) {
int flow, cost;
tie(flow, cost) = flowAndCost(n, start, end, elephants, numSuitcases, budget);
if (flow < numSuitcases) {
return false;
}
return cost <= budget;
}
// Strategy:
// - Binary search to find largest feasible number
void solve() {
int n, m, budget, start, end;
cin >> n >> m >> budget >> start >> end;
int x, y, cost, capacity;
vector<elephant> elephants;
elephants.reserve(m);
for (int i = 0; i < m; ++i) {
cin >> x >> y >> cost >> capacity;
elephants.push_back({x, y, cost, capacity});
}
// Find an upper bound (what is the max flow?)
int maxFlow = get<0>(flowAndCost(n, start, end, elephants, numeric_limits<int>::max(), budget));
// Binary search for highest feasible number of elephants
int a = 0;
int b = maxFlow;
while (a != b) {
int m = a + (b - a + 1) / 2;
if (isFeasible(n, start, end, elephants, m, budget)) {
a = m;
}
else {
b = m - 1;
}
}
cout << a << endl;
}
int main() {
ios_base::sync_with_stdio(false);
int t;
cin >> t;
while (t--) {
solve();
}
return 0;
}