This repository has been archived by the owner on Oct 13, 2024. It is now read-only.
forked from openalpr/train-detector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprep.py
executable file
·197 lines (137 loc) · 5.59 KB
/
prep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#!/usr/bin/python
import os
from PIL import Image
import uuid
import shutil
import sys
WIDTH=35
HEIGHT=19
COUNTRY='hk2'
# WIDTH=36
# HEIGHT=18
# COUNTRY='us'
#WIDTH=52
#HEIGHT=13
#COUNTRY='eu'
#WIDTH=40
#HEIGHT=13
#COUNTRY='br'
#constants
OPENCV_DIR= '/usr/local/bin'
SAMPLE_CREATOR = OPENCV_DIR + '/opencv_createsamples'
BASE_DIR = '/train-detector/'
OUTPUT_DIR = BASE_DIR + "out/"
INPUT_NEGATIVE_DIR = BASE_DIR + 'raw-neg/'
INPUT_POSITIVE_DIR = BASE_DIR + COUNTRY + '/'
OUTPUT_NEGATIVE_DIR = BASE_DIR + 'negative/'
OUTPUT_POSITIVE_DIR = BASE_DIR + 'positive/'
POSITIVE_INFO_FILE = OUTPUT_POSITIVE_DIR + 'positive.txt'
NEGATIVE_INFO_FILE = OUTPUT_NEGATIVE_DIR + 'negative.txt'
VEC_FILE = OUTPUT_POSITIVE_DIR + 'vecfile.vec'
vector_arg = '-vec %s' % (VEC_FILE)
width_height_arg = '-w %d -h %d' % (WIDTH, HEIGHT)
def print_usage():
print "Usage: prep.py [Operation]"
print " -- Operations --"
print " neg -- Prepares the negative samples list"
print " pos -- Copies all the raw positive files to a opencv vector"
print " showpos -- Shows the positive samples that were created"
print " train -- Outputs the command for the Cascade Training algorithm"
def file_len(fname):
with open(fname) as f:
for i, l in enumerate(f):
pass
return i + 1
command=""
if command != "":
pass
elif len(sys.argv) != 2:
print_usage()
exit()
else:
command = sys.argv[1]
if command == "neg":
print "Neg"
# Get rid of any spaces
for neg_file in os.listdir(INPUT_NEGATIVE_DIR):
if " " in neg_file:
fileName, fileExtension = os.path.splitext(neg_file)
newfilename = str(uuid.uuid4()) + fileExtension
#print "renaming: " + files + " to "+ root_dir + "/" + str(uuid.uuid4()) + fileExtension
os.rename(INPUT_NEGATIVE_DIR + neg_file, INPUT_POSITIVE_DIR + newfilename)
f = open(NEGATIVE_INFO_FILE,'w')
## Write a list of all the negative files
for neg_file in os.listdir(INPUT_NEGATIVE_DIR):
if os.path.isdir(INPUT_NEGATIVE_DIR + neg_file):
continue
shutil.copy2(INPUT_NEGATIVE_DIR + neg_file, OUTPUT_NEGATIVE_DIR + neg_file )
f.write(OUTPUT_NEGATIVE_DIR + neg_file + "\n")
f.close()
elif command == "pos":
print "Pos"
info_arg = '-info %s' % (POSITIVE_INFO_FILE)
# Copy all files in the raw directory and build an info file
## Remove all files in the output positive directory
for old_file in os.listdir(OUTPUT_POSITIVE_DIR):
os.unlink(OUTPUT_POSITIVE_DIR + old_file)
## First, prep the sample filenames (make sure they have no spaces)
for files in os.listdir(INPUT_POSITIVE_DIR):
if os.path.isdir(INPUT_POSITIVE_DIR + files):
continue
# Rename the file if it has a space in it
newfilename = files
if " " in files:
fileName, fileExtension = os.path.splitext(files)
newfilename = str(uuid.uuid4()) + fileExtension
#print "renaming: " + files + " to "+ root_dir + "/" + str(uuid.uuid4()) + fileExtension
os.rename(INPUT_POSITIVE_DIR + files, INPUT_POSITIVE_DIR + newfilename)
# Copy from the raw directory to the positive directory
shutil.copy2(INPUT_POSITIVE_DIR + newfilename, OUTPUT_POSITIVE_DIR + newfilename )
total_pics = 0
## Create the positive.txt input file
f = open(POSITIVE_INFO_FILE,'w')
for filename in os.listdir(OUTPUT_POSITIVE_DIR):
if os.path.isdir(OUTPUT_POSITIVE_DIR + filename):
continue
if filename.endswith(".txt"):
continue
try:
img = Image.open(OUTPUT_POSITIVE_DIR + filename)
# get the image's width and height in pixels
width, height = img.size
f.write(filename + " 1 0 0 " + str(width) + " " + str(height) + '\n')
total_pics = total_pics + 1
except IOError:
print "Exception reading image file: " + filename
f.close()
# Collapse the samples into a vector file
execStr = '%s/opencv_createsamples %s %s %s -num %d' % (OPENCV_DIR, vector_arg, width_height_arg, info_arg, total_pics )
print execStr
os.system(execStr)
#opencv_createsamples -info ./positive.txt -vec ../positive/vecfile.vec -w 120 -h 60 -bg ../negative/PentagonCityParkingGarage21.jpg -num 100
elif command == "showpos":
print "SHOW"
execStr = '%s/opencv_createsamples -vec %s -w %d -h %d' % (OPENCV_DIR, VEC_FILE, WIDTH, HEIGHT )
print execStr
os.system(execStr)
#opencv_createsamples -vec ../positive/vecfile.vec -w 120 -h 60
elif command == "train":
print "TRAIN"
data_arg = '-data %s/' % (OUTPUT_DIR)
bg_arg = '-bg %s' % (NEGATIVE_INFO_FILE)
try:
num_pos_samples = file_len(POSITIVE_INFO_FILE)
except:
num_pos_samples = -1
num_neg_samples = file_len(NEGATIVE_INFO_FILE)
execStr = '%s/opencv_traincascade %s %s %s %s -numPos %d -numNeg %d -maxFalseAlarmRate 0.45 -featureType LBP -numStages 13' % (OPENCV_DIR, data_arg, vector_arg, bg_arg, width_height_arg, num_pos_samples, num_neg_samples )
print "Execute the following command to start training:"
print execStr
#opencv_traincascade -data ./out/ -vec ./positive/vecfile.vec -bg ./negative/negative.txt -w 120 -h 60 -numPos 99 -numNeg 5 -featureType LBP -numStages 8
#opencv_traincascade -data ./out/ -vec ./positive/vecfile.vec -bg ./negative/negative.txt -w 120 -h 60 -numPos 99 -numNeg 5 -featureType LBP -numStages 20
elif command == "SDFLSDFSDFSDF":
root_dir = '/home/mhill/projects/anpr/AlprPlus/samples/svm/raw-pos'
outputfilename = "positive.txt"
else:
print_usage()
exit()