-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_interp_wtime.py
334 lines (283 loc) · 14 KB
/
main_interp_wtime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import json
import os
from pathlib import Path
import numpy as np
from compute_f import split_ts_seq, compute_step_positions
from io_f import read_data_file
from visualize_f import visualize_trajectory, visualize_heatmap, save_figure_to_html
floor_data_dir = './data/site2/F8'
path_data_dir = floor_data_dir + '/path_data_files'
floor_plan_filename = floor_data_dir + '/floor_image.png'
floor_info_filename = floor_data_dir + '/floor_info.json'
save_dir = './output/site1/F1'
path_image_save_dir = save_dir + '/path_images'
step_position_image_save_dir = save_dir
magn_image_save_dir = save_dir
wifi_image_save_dir = save_dir + '/wifi_images'
ibeacon_image_save_dir = save_dir + '/ibeacon_images'
wifi_count_image_save_dir = save_dir
def calibrate_magnetic_wifi_ibeacon_to_position(path_file_list):
mwi_datas = {}
for path_filename in path_file_list:
print(f'Processing {path_filename}...')
path_datas = read_data_file(path_filename)
acce_datas = path_datas.acce
magn_datas = path_datas.magn
ahrs_datas = path_datas.ahrs
wifi_datas = path_datas.wifi
ibeacon_datas = path_datas.ibeacon
posi_datas = path_datas.waypoint
step_positions = compute_step_positions(acce_datas, ahrs_datas, posi_datas)
# visualize_trajectory(posi_datas[:, 1:3], floor_plan_filename, width_meter, height_meter, title='Ground Truth', show=True)
# visualize_trajectory(step_positions[:, 1:3], floor_plan_filename, width_meter, height_meter, title='Step Position', show=True)
if wifi_datas.size != 0:
sep_tss = np.unique(wifi_datas[:, 0].astype(float))
wifi_datas_list = split_ts_seq(wifi_datas, sep_tss)
for wifi_ds in wifi_datas_list:
diff = np.abs(step_positions[:, 0] - float(wifi_ds[0, 0]))
index = np.argmin(diff)
target_xy_key = tuple(step_positions[index, 1:3])
if target_xy_key in mwi_datas:
mwi_datas[target_xy_key]['wifi'] = np.append(mwi_datas[target_xy_key]['wifi'], wifi_ds, axis=0)
else:
mwi_datas[target_xy_key] = {
'magnetic': np.zeros((0, 4)),
'wifi': wifi_ds,
'ibeacon': np.zeros((0, 3))
}
if ibeacon_datas.size != 0:
sep_tss = np.unique(ibeacon_datas[:, 0].astype(float))
ibeacon_datas_list = split_ts_seq(ibeacon_datas, sep_tss)
for ibeacon_ds in ibeacon_datas_list:
diff = np.abs(step_positions[:, 0] - float(ibeacon_ds[0, 0]))
index = np.argmin(diff)
target_xy_key = tuple(step_positions[index, 1:3])
if target_xy_key in mwi_datas:
mwi_datas[target_xy_key]['ibeacon'] = np.append(mwi_datas[target_xy_key]['ibeacon'], ibeacon_ds, axis=0)
else:
mwi_datas[target_xy_key] = {
'magnetic': np.zeros((0, 4)),
'wifi': np.zeros((0, 5)),
'ibeacon': ibeacon_ds
}
return mwi_datas
def extract_magnetic_strength(mwi_datas):
magnetic_strength = {}
for position_key in mwi_datas:
# print(f'Position: {position_key}')
magnetic_data = mwi_datas[position_key]['magnetic']
magnetic_s = np.mean(np.sqrt(np.sum(magnetic_data[:, 1:4] ** 2, axis=1)))
magnetic_strength[position_key] = magnetic_s
return magnetic_strength
def extract_wifi_rssi(mwi_datas):
wifi_rssi = {}
for position_key in mwi_datas:
# print(f'Position: {position_key}')
wifi_data = mwi_datas[position_key]['wifi']
for wifi_d in wifi_data:
bssid = wifi_d[2]
rssi = int(wifi_d[3])
if bssid in wifi_rssi:
position_rssi = wifi_rssi[bssid]
if position_key in position_rssi:
old_rssi = position_rssi[position_key][0]
old_count = position_rssi[position_key][1]
position_rssi[position_key][0] = (old_rssi * old_count + rssi) / (old_count + 1)
position_rssi[position_key][1] = old_count + 1
else:
position_rssi[position_key] = np.array([rssi, 1])
else:
position_rssi = {}
position_rssi[position_key] = np.array([rssi, 1])
wifi_rssi[bssid] = position_rssi
return wifi_rssi
def extract_ibeacon_rssi(mwi_datas):
ibeacon_rssi = {}
for position_key in mwi_datas:
# print(f'Position: {position_key}')
ibeacon_data = mwi_datas[position_key]['ibeacon']
for ibeacon_d in ibeacon_data:
ummid = ibeacon_d[1]
rssi = int(ibeacon_d[2])
if ummid in ibeacon_rssi:
position_rssi = ibeacon_rssi[ummid]
if position_key in position_rssi:
old_rssi = position_rssi[position_key][0]
old_count = position_rssi[position_key][1]
position_rssi[position_key][0] = (old_rssi * old_count + rssi) / (old_count + 1)
position_rssi[position_key][1] = old_count + 1
else:
position_rssi[position_key] = np.array([rssi, 1])
else:
position_rssi = {}
position_rssi[position_key] = np.array([rssi, 1])
ibeacon_rssi[ummid] = position_rssi
return ibeacon_rssi
def extract_wifi_count(mwi_datas):
wifi_counts = {}
for position_key in mwi_datas:
# print(f'Position: {position_key}')
wifi_data = mwi_datas[position_key]['wifi']
count = np.unique(wifi_data[:, 2]).shape[0]
wifi_counts[position_key] = count
return wifi_counts
def interp_pos(tnow, p1, p2): # p1 & p2 are arrays (t, x, y)
f = (float(tnow) - float(p1[0]))/(float(p2[0]) - float(p1[0]))
x = float(p1[1]) + f * (float(p2[1]) - float(p1[1]))
y = float(p1[2]) + f * (float(p2[2]) - float(p1[2]))
return (x,y)
if __name__ == "__main__":
Path(path_image_save_dir).mkdir(parents=True, exist_ok=True)
Path(magn_image_save_dir).mkdir(parents=True, exist_ok=True)
Path(wifi_image_save_dir).mkdir(parents=True, exist_ok=True)
Path(ibeacon_image_save_dir).mkdir(parents=True, exist_ok=True)
with open(floor_info_filename) as f:
floor_info = json.load(f)
width_meter = floor_info["map_info"]["width"]
height_meter = floor_info["map_info"]["height"]
# path_filenames = list(Path(path_data_dir).resolve().glob("5ddb93079191710006b5763b.txt"))
path_filenames = list(Path(path_data_dir).resolve().glob("*.txt"))
# 1. visualize ground truth positions
"""
print('Visualizing ground truth positions...')
for path_filename in path_filenames:
print(f'Processing file: {path_filename}...')
path_data = read_data_file(path_filename)
path_id = path_filename.name.split(".")[0]
fig = visualize_trajectory(path_data.waypoint[:, 1:3], floor_plan_filename, width_meter, height_meter, title=path_id, show=False)
html_filename = f'{path_image_save_dir}/{path_id}.html'
html_filename = str(Path(html_filename).resolve())
save_figure_to_html(fig, html_filename)
"""
# 2. visualize step position, magnetic, wifi, ibeacon
print('Visualizing more information...')
# mwi_datas = calibrate_magnetic_wifi_ibeacon_to_position(path_filenames)
collections = {}
nc = 0
for path_filename in path_filenames:
print(f'Processing {path_filename}...')
path_datas = read_data_file(path_filename)
acce_datas = path_datas.acce
magn_datas = path_datas.magn
ahrs_datas = path_datas.ahrs
wifi_datas = path_datas.wifi
ibeacon_datas = path_datas.ibeacon
posi_datas = path_datas.waypoint
posi_datas = posi_datas
if len(wifi_datas) == 0:
continue
nf = 0
crtfile_col = nc # fist collection number in this file
#for p in posi_datas:
# print("posi ", p[0], p[1], p[2])
tp = 0 # position index
prevt = posi_datas[0][0]
for p in wifi_datas:
if p[0] != prevt: # new set of wifi readings, new collection point
if tp + 1 < len(posi_datas):
(x,y) = interp_pos(p[0], posi_datas[tp], posi_datas[tp+1])
else: # discard wifi readings after the last waypoint
break # goto next file
#print("pos = ", (x,y))
col = {}
col['map'] = str(path_filename)
if nf == 0:
col['comment'] = " ".join(path_datas.comments)
nf = nf + 1
col['x'] = x
col['y'] = y
col['z'] = 0
fp = {}
fp['timestamp'] = str(int(p[0]))
wf = {}
fp['wifi'] = wf
fp['ble'] = {}
col['fingerprints'] = []
col['fingerprints'] = [fp]
collections[f"collection{nc}"] = col
nc = nc + 1
while tp + 1 < len(posi_datas) and float(p[0]) > float(posi_datas[tp+1][0]):
tp = tp + 1 # check time p[0] against times of waypoints
#print("w", p[0], p[2], p[3], "wa ", tp, "nc ", nc)
prevt = p[0]
if p[2] in wf:
wf[p[2]]['rssi'].append(int(p[3]))
else:
wf[p[2]] = {}
wf[p[2]]['rssi'] = [int(p[3])]
for p in ibeacon_datas: # insert into closest collection in time (times decided by wifi timestamp)
bestc = crtfile_col
besttime = 3600
for c in np.arange(crtfile_col, nc):
timediff = np.abs(int(p[0]) - int(collections[f"collection{c}"]['fingerprints'][0]['timestamp']))
if timediff < besttime:
besttime = timediff
bestc = c
#print("b", p[0], p[1], p[2], "coll ", bestc)
ble = collections[f"collection{bestc}"]["fingerprints"][0]["ble"]
if p[1] in ble:
ble[p[1]]['rssi'].append(int(p[2]))
else:
ble[p[1]] = {}
ble[p[1]]['rssi'] = [int(p[2])]
#delete collections with empty wifi
cols_with_wifi = []
#for c in collections.copy().keys():
# if len(collections[c]["fingerprints"][0]["wifi"].keys()) == 0:
# del collections[c]
with open(os.path.basename(floor_data_dir)+'.intw.json', "w+") as outfile:
json.dump(collections, outfile, indent = 4)
outfile.close()
exit(1)
step_positions = np.array(list(mwi_datas.keys()))
fig = visualize_trajectory(step_positions, floor_plan_filename, width_meter, height_meter, mode='markers', title='Step Position', show=True)
html_filename = f'{step_position_image_save_dir}/step_position.html'
html_filename = str(Path(html_filename).resolve())
save_figure_to_html(fig, html_filename)
magnetic_strength = extract_magnetic_strength(mwi_datas)
heat_positions = np.array(list(magnetic_strength.keys()))
heat_values = np.array(list(magnetic_strength.values()))
fig = visualize_heatmap(heat_positions, heat_values, floor_plan_filename, width_meter, height_meter, colorbar_title='mu tesla', title='Magnetic Strength', show=True)
html_filename = f'{magn_image_save_dir}/magnetic_strength.html'
html_filename = str(Path(html_filename).resolve())
save_figure_to_html(fig, html_filename)
wifi_rssi = extract_wifi_rssi(mwi_datas)
print(f'This floor has {len(wifi_rssi.keys())} wifi aps')
ten_wifi_bssids = list(wifi_rssi.keys()) #[0:10]
print('Example 10 wifi ap bssids:\n')
for bssid in ten_wifi_bssids:
print(bssid)
target_wifi = input(f"Please input target wifi ap bssid:\n")
# target_wifi = '1e:74:9c:a7:b2:e4'
heat_positions = np.array(list(wifi_rssi[target_wifi].keys()))
heat_values = np.array(list(wifi_rssi[target_wifi].values()))[:, 0]
fig = visualize_heatmap(heat_positions, heat_values, floor_plan_filename, width_meter, height_meter, colorbar_title='dBm', title=f'Wifi: {target_wifi} RSSI', show=True)
html_filename = f'{wifi_image_save_dir}/{target_wifi.replace(":", "-")}.html'
html_filename = str(Path(html_filename).resolve())
save_figure_to_html(fig, html_filename)
ibeacon_rssi = extract_ibeacon_rssi(mwi_datas)
print(f'This floor has {len(ibeacon_rssi.keys())} ibeacons')
ten_ibeacon_ummids = list(ibeacon_rssi.keys())[0:10]
print('Example 10 ibeacon UUID_MajorID_MinorIDs:\n')
for ummid in ten_ibeacon_ummids:
print(ummid)
target_ibeacon = input(f"Please input target ibeacon UUID_MajorID_MinorID:\n")
# target_ibeacon = 'FDA50693-A4E2-4FB1-AFCF-C6EB07647825_10073_61418'
heat_positions = np.array(list(ibeacon_rssi[target_ibeacon].keys()))
heat_values = np.array(list(ibeacon_rssi[target_ibeacon].values()))[:, 0]
fig = visualize_heatmap(heat_positions, heat_values, floor_plan_filename, width_meter, height_meter, colorbar_title='dBm', title=f'iBeacon: {target_ibeacon} RSSI', show=True)
html_filename = f'{ibeacon_image_save_dir}/{target_ibeacon}.html'
html_filename = str(Path(html_filename).resolve())
save_figure_to_html(fig, html_filename)
wifi_counts = extract_wifi_count(mwi_datas)
heat_positions = np.array(list(wifi_counts.keys()))
heat_values = np.array(list(wifi_counts.values()))
# filter out positions that no wifi detected
mask = heat_values != 0
heat_positions = heat_positions[mask]
heat_values = heat_values[mask]
fig = visualize_heatmap(heat_positions, heat_values, floor_plan_filename, width_meter, height_meter, colorbar_title='number', title=f'Wifi Count', show=True)
html_filename = f'{wifi_count_image_save_dir}/wifi_count.html'
html_filename = str(Path(html_filename).resolve())
save_figure_to_html(fig, html_filename)
print('fff')