-
Notifications
You must be signed in to change notification settings - Fork 0
/
binreg.Rd
55 lines (52 loc) · 2 KB
/
binreg.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
% File binreg/man/binreg.Rd
% Part of the binreg package for R (http://www.R-project.org)
% Copyright (C) 2013 Bernardo dos Santos, Adriano Polpo,
% Carlos A. de B. Pereira.
% Distributed under GPL 3 or later
\name{binreg}
%%%
\alias{binreg}
\title{Binary regression models.}
\description{
Performs the Maximum Likelihood Estimation (MLE) of some models for binary data.
}
\usage{
binreg(formula, link, data, subset, start, tol, iterlim, na.action)
}
\arguments{
\item{formula}{an object of class 'formula' (or one that can be coerced to
that class): a symbolic description of the model to be
fitted.}
\item{link}{the link function to be used. The options are: 'Aranda-Ordaz',
'Weibull', 'CWeibull', 'Stukel', 'Prentice'.}
\item{data}{an optional data frame, list or environment (or object
coercible by 'as.data.frame' to a data frame) containing the
variables in the model. If not found in 'data', the
variables are taken from 'environment(formula)'.}
\item{subset}{an optional vector specifying a subset of observations to be
used in the fitting process.}
\item{start}{initial guess to model's parameters. Generally it is not necessary.}
\item{tol}{tolerance error used in the estimation.}
\item{iterlim}{maximum number of iteration to be performed.}
\item{na.action}{a function which indicates what should happen when the data
contain 'NA's. More details see 'glm' function.}
}
\details{
It is a function to facilitate de use of LaplacesDemon function.
Transform a formula of binary regression model in data to be used with
LaplacesDemon function, and suggest an command to run the LaplacesDemon.
}
\value{
'binreg' returns an object of class inheriting from 'glm'. For more details
see 'glm' function.
}
\seealso{
\code{\link{glm}}
}
\examples{
set.seed(666)
x <- rnorm(0,1)
y <- rbern(length(x),pnorm(0.5+2*x))
fit <- binreg(y ~ x, "Aranda")
summary(fit)
}