MarioNette: Self-Supervised Sprite Learning
Dmitriy Smirnov, Michaël Gharbi, Matthew Fisher, Vitor Guizilini, Alexei A. Efros, Justin Solomon
NeurIPS 2021
To install the neecssary dependencies, run:
conda env create -f environment.yml
conda activate MarioNette
Also, be sure to execute export PYTHONPATH=:$PYTHONPATH
prior to running any of the scripts.
To train a MarioNette model, run:
python scripts/train.py --checkpoint_dir out_dir --data data_dir
Your dataset should be stored in data_dir
, with each
input frame named #.png
. If the images are not 128x128 pixels, specify the
resolution using the --canvas_size
flag.
Optionally, pass a --layer_size
flag to specify the
anchor grid resolution, --num_layers
to specify the number of layers, or
--num_classes
to specify the size of the spirte dictionary.
To monitor the training, launch a TensorBoard instance with --logdir out_dir
.
@article{smirnov2021marionette,
title={{MarioNette}: Self-Supervised Sprite Learning},
author={Smirnov, Dmitriy and Gharbi, Michael and Fisher, Matthew and Guizilini, Vitor and Efros, Alexei A. and Solomon, Justin},
year={2021},
journal={Conference on Neural Information Processing Systems}
}