forked from ESCOMP/CARMA_base
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvertadv.F90
256 lines (213 loc) · 8.67 KB
/
vertadv.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
! Include shortname defintions, so that the F77 code does not have to be modified to
! reference the CARMA structure.
#include "carma_globaer.h"
!! This routine calculates vertrical advection rates using
!! Piecewise Polynomial Method [Colela and Woodard, J. Comp. Phys.,
!! 54, 174-201, 1984]
!!
!! @author Eric Jensen
!! @version Dec-1996
subroutine vertadv(carma, cstate, vtrans, cvert, itbnd, ibbnd, cvert_tbnd, cvert_bbnd, vertadvu, vertadvd, rc)
! types
use carma_precision_mod
use carma_enums_mod
use carma_constants_mod
use carma_types_mod
use carmastate_mod
use carma_mod
implicit none
type(carma_type), intent(in) :: carma !! the carma object
type(carmastate_type), intent(inout) :: cstate !! the carma state object
real(kind=f), intent(inout) :: vtrans(NZP1) !! vertical velocity
real(kind=f), intent(in) :: cvert(NZ) !! quantity being transported
integer, intent(in) :: itbnd !! top boundary condition
integer, intent(in) :: ibbnd !! bottom boundary condition
real(kind=f), intent(in) :: cvert_tbnd !! quantity at top boundary
real(kind=f), intent(in) :: cvert_bbnd !! quantity at bottom boundary
real(kind=f), intent(out) :: vertadvu(NZP1) !! upward vertical transport rate into level k from level k-1 [cm/s]
real(kind=f), intent(out) :: vertadvd(NZP1) !! downward vertical transport rate into level k from level k-1 [cm/s]
integer, intent(inout) :: rc !! return code, negative indicates failure
! Local declarations
integer :: k
integer :: nzm1
integer :: nzm2
integer :: itwo
real(kind=f) :: dela(NZ)
real(kind=f) :: delma(NZ)
real(kind=f) :: aju(NZ)
real(kind=f) :: ar(NZ)
real(kind=f) :: al(NZ)
real(kind=f) :: a6(NZ)
real(kind=f) :: dpc, dpc1, dpcm1
real(kind=f) :: ratt1, ratt2, ratt3, rat1, rat2, rat3, rat4, den1
real(kind=f) :: com2, x, xpos
real(kind=f) :: cvert0, cvertnzp1
! Initialize fluxes to zero
vertadvu(:) = 0._f
vertadvd(:) = 0._f
! If doing explicit sedimentation then do a simple sorting of positive and negative
! velocities into up and down components.
if (do_explised) then
where (vtrans < 0._f)
vertadvd = -vtrans
elsewhere
vertadvu = vtrans
end where
else
if( ibbnd .eq. I_FLUX_SPEC ) vtrans(1) = 0._f
if( itbnd .eq. I_FLUX_SPEC ) vtrans(NZP1) = 0._f
! Set some constants
nzm1 = max( 1, NZ-1 )
nzm2 = max( 1, NZ-2 )
itwo = min( 2, NZ )
! First, use cubic fits to estimate concentration values at layer
! boundaries
do k = 2,NZ-1
dpc = cvert(k) / dz(k)
dpc1 = cvert(k+1) / dz(k+1)
dpcm1 = cvert(k-1) / dz(k-1)
ratt1 = dz(k) / ( dz(k-1) + dz(k) + dz(k+1) )
ratt2 = ( 2._f*dz(k-1) + dz(k) ) / ( dz(k+1) + dz(k) )
ratt3 = ( 2._f*dz(k+1) + dz(k) ) / ( dz(k-1) + dz(k) )
dela(k) = ratt1 * ( ratt2*(dpc1-dpc) + ratt3*(dpc-dpcm1) )
if( (dpc1-dpc)*(dpc-dpcm1) .gt. 0._f .and. dela(k) .ne. 0._f ) then
delma(k) = min(abs(dela(k)), 2._f*abs(dpc-dpc1), 2._f*abs(dpc-dpcm1)) * abs(dela(k))/dela(k)
else
delma(k) = 0._f
endif
enddo ! k = 2,NZ-2
do k = 2,NZ-2
dpc = cvert(k) / dz(k)
dpc1 = cvert(k+1) / dz(k+1)
dpcm1 = cvert(k-1) / dz(k-1)
rat1 = dz(k) / ( dz(k) + dz(k+1) )
rat2 = 2._f * dz(k+1) * dz(k) / ( dz(k) + dz(k+1) )
rat3 = ( dz(k-1) + dz(k) ) / ( 2._f*dz(k) + dz(k+1) )
rat4 = ( dz(k+2) + dz(k+1) ) / ( 2._f*dz(k+1) + dz(k) )
den1 = dz(k-1) + dz(k) + dz(k+1) + dz(k+2)
! <aju(k)> is the estimate for concentration (dn/dz) at layer
! boundary <k>+1/2.
aju(k) = dpc + rat1*(dpc1-dpc) + 1._f/den1 * ( rat2*(rat3-rat4)*(dpc1-dpc) - &
dz(k)*rat3*delma(k+1) + dz(k+1)*rat4*delma(k) )
enddo ! k = 2,NZ-2
! Now construct polynomial functions in each layer
do k = 3,NZ-2
al(k) = aju(k-1)
ar(k) = aju(k)
enddo
! Use linear functions in first two and last two layers
ar(itwo) = aju(itwo)
al(itwo) = cvert(1)/dz(1) + (zl(itwo)-zc(1)) / &
(zc(itwo)-zc(1)) * (cvert(itwo)/dz(itwo)-cvert(1)/dz(1))
ar(1) = al(itwo)
al(1) = cvert(1)/dz(1) - (zc(1)-zl(1)) / &
(zc(itwo)-zc(1)) * (cvert(itwo)/dz(itwo)-cvert(1)/dz(1))
al(nzm1) = aju(nzm2)
ar(nzm1) = cvert(nzm1)/dz(nzm1) + (zl(NZ)-zc(nzm1)) &
/ (zc(NZ)-zc(nzm1)) * (cvert(NZ)/dz(NZ)-cvert(nzm1)/dz(nzm1))
al(NZ) = ar(nzm1)
ar(NZ) = cvert(nzm1)/dz(nzm1) + (zl(NZ+1)-zc(nzm1)) &
/ (zc(NZ)-zc(nzm1)) * (cvert(NZ)/dz(NZ)-cvert(nzm1)/dz(nzm1))
! Ensure that boundary values are not negative
al(1) = max( al(1), 0._f )
ar(NZ) = max( ar(NZ), 0._f )
! Next, ensure that polynomial functions do not deviate beyond the
! range [<al(k)>,<ar(k)>]
do k = 1,NZ
dpc = cvert(k) / dz(k)
if( (ar(k)-dpc)*(dpc-al(k)) .le. 0._f ) then
al(k) = dpc
ar(k) = dpc
endif
if( (ar(k)-al(k))*( dpc - 0.5_f*(al(k)+ar(k)) ) .gt. 1._f/6._f*(ar(k)-al(k))**2 ) &
al(k) = 3._f*dpc - 2._f*ar(k)
if( (ar(k)-al(k))*( dpc - 0.5_f*(al(k)+ar(k)) ) .lt. -1._f/6._f*(ar(k)-al(k))**2 ) &
ar(k) = 3._f*dpc - 2._f*al(k)
enddo
! Calculate fluxes across each layer boundary
do k = 1,NZ
dpc = cvert(k) / dz(k)
dela(k) = ar(k) - al(k)
a6(k) = 6._f * ( dpc - 0.5_f*(ar(k)+al(k)) )
enddo
do k = 1,NZ-1
com2 = ( dz(k) + dz(k+1) ) / 2._f
x = vtrans(k+1)*dtime/dz(k)
xpos = abs(x)
! Upward transport rate
if( vtrans(k+1) .gt. 0._f )then
if( x .lt. 1._f .and. cvert(k) .ne. 0._f )then
vertadvu(k+1) = ( vtrans(k+1) * com2 ) * ( ( ar(k) - 0.5_f*dela(k)*x + &
(x/2._f - (x**2)/3._f)*a6(k) ) / cvert(k) )
! If Courant # > 1, use upwind advection
else
vertadvu(k+1) = vtrans(k+1)
endif
! Downward transport rate
elseif( vtrans(k+1) .lt. 0._f )then
if( x .gt. -1._f .and. cvert(k+1) .ne. 0._f )then
vertadvd(k+1) = ( -vtrans(k+1) * com2 ) * &
( ( al(k+1) + 0.5_f*dela(k+1)*xpos + &
( xpos/2._f - (xpos**2)/3._f)*a6(k+1) ) / cvert(k+1) )
else
vertadvd(k+1) = -vtrans(k+1)
endif
endif
enddo ! k = 1,NZ-1
! Lower boundary transport rates: If I_FIXED_CONC boundary
! condtion is selected, then use concentration assumed just beyond
! the lowest layer edge to calculate the transport rate across
! the bottom boundary of the model.
if( ibbnd .eq. I_FIXED_CONC ) then
com2 = ( dz(1) + dz(itwo) ) / 2._f
x = vtrans(1)*dtime/dz(1)
xpos = abs(x)
cvert0 = cvert_bbnd
if( vtrans(1) .gt. 0._f )then
if( x .lt. 1._f .and. cvert0 .ne. 0._f )then
vertadvu(1) = vtrans(1)/cvert0*com2 &
* ( ar(1) - 0.5_f*dela(1)*x + &
(x/2._f - (x**2)/3._f)*a6(1) )
else
vertadvu(1) = vtrans(1)
endif
elseif( vtrans(1) .lt. 0._f )then
if( x .gt. -1._f .and. cvert(1) .ne. 0._f )then
vertadvd(1) = -vtrans(1)/ &
cvert(1)*com2 &
* ( al(1) + 0.5_f*dela(1)*xpos + &
(xpos/2._f - (xpos**2)/3._f)*a6(1) )
else
vertadvd(1) = -vtrans(1)
endif
endif
endif
! Upper boundary transport rates
if( itbnd .eq. I_FIXED_CONC ) then
com2 = ( dz(NZ) + dz(nzm1) ) / 2._f
x = vtrans(NZ+1)*dtime/dz(NZ)
xpos = abs(x)
cvertnzp1 = cvert_tbnd
if( vtrans(NZ+1) .gt. 0._f )then
if( x .lt. 1._f .and. cvert(NZ) .ne. 0._f )then
vertadvu(NZ+1) = vtrans(NZ+1)/cvert(NZ)*com2 &
* ( ar(NZ) - 0.5_f*dela(NZ)*x + &
(x/2._f - (x**2)/3._f)*a6(NZ) )
else
vertadvu(NZ+1) = vtrans(NZ+1)
endif
elseif( vtrans(NZ+1) .lt. 0._f )then
if( x .gt. -1._f .and. cvertnzp1 .ne. 0._f )then
vertadvd(NZ+1) = -vtrans(NZ+1)/ &
cvertnzp1*com2 &
* ( al(NZ) + 0.5_f*dela(NZ)*xpos + &
(xpos/2._f - (xpos**2)/3._f)*a6(NZ) )
else
vertadvd(NZ+1) = -vtrans(NZ+1)
endif
endif
endif
endif
! Return to caller with vertical transport rates.
return
end