forked from ESCOMP/CARMA_base
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetupatm.F90
127 lines (103 loc) · 4.21 KB
/
setupatm.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
! Include shortname defintions, so that the F77 code does not have to be modified to
! reference the CARMA structure.
#include "carma_globaer.h"
!! This routine setups up parameters related to the atmospheric state. It assumes that the
!! pressure, temperature, and dimensional fields (xc, dx, yc, dy, zc, zl) have already been
!! specified and all state arrays allocated via CARMASTATE_Create().
!!
!! @author Chuck Bardeen
!! @ version Feb-1995
!! @see CARMASTATE_Create
subroutine setupatm(carma, cstate, rescale, rc)
! types
use carma_precision_mod
use carma_enums_mod
use carma_constants_mod
use carma_types_mod
use carmastate_mod
use carma_mod
implicit none
type(carma_type), intent(in) :: carma !! the carma object
type(carmastate_type), intent(inout) :: cstate !! the carma state object
logical, intent(in) :: rescale !! rescale the fall velocity for zmet change, this is instead of realculating
integer, intent(inout) :: rc !! return code, negative indicates failure
! Local declarations
!--
! For air viscosity calculations
! Air viscosity <rmu> is from Sutherland's equation (using Smithsonian
! Meteorological Tables, in which there is a misprint -- T is deg_K, not
! deg_C.
real(kind=f), parameter :: rmu_0 = 1.8325e-4_f
real(kind=f), parameter :: rmu_t0 = 296.16_f
real(kind=f), parameter :: rmu_c = 120._f
real(kind=f), parameter :: rmu_const = rmu_0 * (rmu_t0 + rmu_c)
integer :: ielem, ibin, i, j, ix, iy, iz, ie, ig, ip, igrp, jgrp, igroup
! Calculate the dry air density at each level, using the ideal gas
! law. This will be used to calculate zmet.
rhoa(:) = p(:) / (R_AIR * t(:))
! Calculate the dimensions and the dimensional metrics.
dz(:) = abs(zl(2:NZP1) - zl(1:NZ))
! Put the fall velocity back into cgs units, so that we can determine
! new metrics and then scale it back. This is optional and is done instead
! of recalculating everything from scratch to improve performance.
if (rescale .and. (igridv /= I_CART)) then
do ibin = 1, NBIN
do igroup = 1, NGROUP
vf(:, ibin, igroup) = vf(:, ibin, igroup) * zmetl(:)
dkz(:, ibin, igroup) = dkz(:, ibin, igroup) * (zmetl(:)**2)
end do
end do
end if
! Vertical Metrics
select case(igridv)
! Cartesian
case (I_CART)
zmet = 1._f
! Sigma
case (I_SIG)
zmet(:) = abs(((pl(1:NZ) - pl(2:NZP1)) / (zl(1:NZ) - zl(2:NZP1))) / &
(GRAV * rhoa(:)))
! Hybrid
case (I_HYBRID)
zmet(:) = abs(((pl(1:NZ) - pl(2:NZP1)) / (zl(1:NZ) - zl(2:NZP1))) / &
(GRAV * rhoa(:)))
case default
if (do_print) write(LUNOPRT,*) "setupatm:: ERROR - The specified vertical grid type (", igridv, &
") is not supported."
rc = -1
end select
! Interpolate the z metric to the grid box edges.
if (NZ == 1) then
zmetl(:) = zmet(1)
else
! Extrpolate the top and bottom.
zmetl(1) = zmet(1) + (zmet(2) - zmet(1)) / (zc(2) - zc(1)) * (zl(1) - zc(1))
zmetl(NZP1) = zmet(NZ) + (zmet(NZ) - zmet(NZ-1)) / (zc(NZ) - zc(NZ-1)) * (zl(NZP1) - zc(NZ))
! Interpolate the middles.
if (NZ > 2) then
do iz = 2, NZ
zmetl(iz) = zmet(iz-1) + (zmet(iz) - zmet(iz-1)) / (zc(iz) - zc(iz-1)) * (zl(iz) - zc(iz-1))
end do
end if
end if
! Determine the z metrics at the grid box edges and then use this to put the
! fall velocity back into /x/y/z units.
if (rescale .and. (igridv /= I_CART)) then
do ibin = 1, NBIN
do igroup = 1, NGROUP
vf(:, ibin, igroup) = vf(:, ibin, igroup) / zmetl(:)
dkz(:, ibin, igroup) = dkz(:, ibin, igroup) / (zmetl(:)**2)
end do
end do
end if
! Scale the density into the units carma wants (i.e. /x/y/z)
rhoa(:) = rhoa(:) * zmet(:)
! Use the pressure difference across the cell and the fact that the
! atmosphere is hydrostatic to caclulate an average density in the
! grid box.
rhoa_wet(:) = abs((pl(2:NZP1) - pl(1:NZ))) / (GRAV)
rhoa_wet(:) = rhoa_wet(:) / dz(:)
! Calculate the thermal properties of the atmosphere.
rmu(:) = rmu_const / ( t(:) + rmu_c ) * (t(:) / rmu_t0 )**1.5_f
thcond(:) = (5.69_f + .017_f*(t(:) - T0)) * 4.186e2_f
end subroutine