-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathturing_sim.py
90 lines (84 loc) · 3.35 KB
/
turing_sim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import brain
import brain_util as bu
import numpy as np
def larger_k(n=10000,k=100,p=0.01,beta=0.05, bigger_factor=10):
b = brain.Brain(p, save_winners=True)
b.add_stimulus("stim", k)
b.add_area("A",n,k,beta)
b.add_area("B",n,bigger_factor*k,beta)
b.update_plasticities(area_update_map={"A":[("B", 0.8), ("A", 0.0)],
"B":[("A", 0.8), ("B", 0.8)]})
b.project({"stim":["A"]},{})
t=1
while True:
b.project({"stim":["A"]},{"A":["A"]})
print("A total w is " + str(b.areas["A"].w))
if (b.areas["B"].num_first_winners <= 1) and (b.areas["A"].num_first_winners <= 1):
print("proj(stim, A) stabilized after " + str(t) + " rounds")
break
t += 1
A_after_proj = b.areas["A"].winners
b.project({"stim":["A"]},{"A":["A","B"]})
t=1
while True:
b.project({"stim":["A"]},{"A":["A","B"], "B":["B", "A"]})
print("Num new winners in A " + str(b.areas["A"].num_first_winners))
print("Num new winners in B " + str(b.areas["B"].num_first_winners))
if (b.areas["B"].num_first_winners <= 1) and (b.areas["A"].num_first_winners <= 1):
print("recip_project(A,B) stabilized after " + str(t) + " rounds")
break
t += 1
print("Final statistics" )
print("A.w = " + str(b.areas["A"].w))
print("B.w = " + str(b.areas["B"].w))
A_after_B = b.areas["A"].saved_winners[-1]
o = bu.overlap(A_after_proj, A_after_B)
print("Overlap is " + str(o))
def turing_erase(n=50000,k=100,p=0.01,beta=0.05, r=1.0, bigger_factor=20):
b = brain.Brain(p, save_winners=True)
# Much smaller stimulus, similar to lower p from stimulus into A
smaller_k = int(r*k)
b.add_stimulus("stim", smaller_k)
b.add_area("A",n,bigger_factor * k,beta)
b.add_area("B",n,bigger_factor * k,beta)
b.add_area("C",n,bigger_factor * k,beta)
b.update_plasticities(area_update_map={"A":[("B", 0.8),("C", 0.8), ("A", 0.01)],
"B":[("A", 0.8), ("B", 0.8)],
"C":[("A", 0.8), ("C", 0.8)]},
stim_update_map={"A":[("stim", 0.05)]})
b.project({"stim":["A"]},{})
t=1
while True:
b.project({"stim":["A"]},{"A":["A"]})
if (b.areas["B"].num_first_winners <= 1) and (b.areas["A"].num_first_winners <= 1):
print("proj(stim, A) stabilized after " + str(t) + " rounds")
break
t += 1
b.project({"stim":["A"]},{"A":["A","B"]})
t=1
while True:
b.project({"stim":["A"]},{"A":["A","B"], "B":["B", "A"]})
print("Num new winners in A " + str(b.areas["A"].num_first_winners))
if (b.areas["B"].num_first_winners <= 1) and (b.areas["A"].num_first_winners <= 1):
print("recip_project(A,B) stabilized after " + str(t) + " rounds")
break
t += 1
A_after_proj_B = b.areas["A"].winners
b.project({"stim":["A"]},{"A":["A","C"]})
t=1
while True:
b.project({"stim":["A"]},{"A":["A","C"], "C":["C", "A"]})
print("Num new winners in A " + str(b.areas["A"].num_first_winners))
if (b.areas["C"].num_first_winners <= 1) and (b.areas["A"].num_first_winners <= 1):
print("recip_project(A,C) stabilized after " + str(t) + " rounds")
break
t += 1
A_after_proj_C = b.areas["A"].winners
# Check final conditions
b.project({},{"A":["B"]})
B_after_erase = b.areas["B"].saved_winners[-1]
B_before_erase = b.areas["B"].saved_winners[-2]
B_overlap = bu.overlap(B_after_erase, B_before_erase)
print("Overlap of B after erase and with y is " + str(B_overlap) + "\n")
A_overlap = bu.overlap(A_after_proj_B,A_after_proj_C)
print("Overlap of A after proj(B) vs after proj(C) is " + str(A_overlap) + "\n")