forked from dariodematties/BirdNET_Lite_Plugin
-
Notifications
You must be signed in to change notification settings - Fork 0
/
analyze.py
362 lines (271 loc) · 13.3 KB
/
analyze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
os.environ['CUDA_VISIBLE_DEVICES'] = ''
try:
import tflite_runtime.interpreter as tflite
except:
from tensorflow import lite as tflite
import argparse
import operator
# import librosa
from scipy.io import wavfile
from scipy import interpolate
import numpy as np
import math
import time
import shutil
from waggle.plugin import Plugin
from waggle.data.audio import Microphone
from time import sleep
import logging
logging.basicConfig(level=logging.DEBUG)
def readAudioDataset(args):
# Parse dataset
dataset = parseTestSet(args.i, args.filetype)
# Read audio data
audioData = []
timeStamps = []
for s in dataset:
audioData.append(readAudioData(s, args.overlap))
#audioData = readAudioData(args.i, args.overlap)
timeStamps.append(int(os.path.getmtime(s) * 1e9))
return audioData, timeStamps
def parseTestSet(path, file_type='wav'):
# Find all soundscape files
dataset = []
if os.path.isfile(path):
dataset.append(path)
else:
for dirpath, _, filenames in os.walk(path):
for f in filenames:
if f.rsplit('.', 1)[-1].lower() == file_type:
dataset.append(os.path.abspath(os.path.join(dirpath, f)))
# Dataset stats
print('FILES IN DATASET:', len(dataset))
return dataset
def audioRecording(path, number_of_recordings, silence_interval, sound_interval, file_type='wav'):
print('IN THIS RUN ', number_of_recordings, ' FILES OF ', sound_interval, ' SECONDS WILL BE PROCESSED')
microphone = Microphone(samplerate=48000)
for i in range(number_of_recordings):
# Recording audio
print('RECORDING NUMBER: ', i)
print('RECORDING AUDIO FROM MIC DURING: ', sound_interval, ' SECONDS... ', end=' ')
sample = microphone.record(sound_interval)
filename = "sample_" + str(i) + "." + file_type
sample.save(os.path.abspath(os.path.join(path, filename)))
print('DONE!')
sleep(silence_interval)
def loadModel():
global INPUT_LAYER_INDEX
global OUTPUT_LAYER_INDEX
global MDATA_INPUT_INDEX
global CLASSES
print('LOADING TF LITE MODEL...', end=' ')
# Load TFLite model and allocate tensors.
interpreter = tflite.Interpreter(model_path='model/BirdNET_6K_GLOBAL_MODEL.tflite')
interpreter.allocate_tensors()
# Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
# Get input tensor index
INPUT_LAYER_INDEX = input_details[0]['index']
MDATA_INPUT_INDEX = input_details[1]['index']
OUTPUT_LAYER_INDEX = output_details[0]['index']
# Load labels
CLASSES = []
with open('model/labels.txt', 'r', encoding="utf-8") as lfile:
for line in lfile.readlines():
CLASSES.append(line.replace('\n', ''))
print('DONE!')
return interpreter
def loadCustomSpeciesList(path):
slist = []
if os.path.isfile(path):
with open(path, 'r') as csfile:
for line in csfile.readlines():
slist.append(line.replace('\r', '').replace('\n', ''))
return slist
def splitSignal(sig, rate, overlap, seconds=3.0, minlen=1.5):
# Split signal with overlap
sig_splits = []
for i in range(0, len(sig), int((seconds - overlap) * rate)):
split = sig[i:i + int(seconds * rate)]
# End of signal?
if len(split) < int(minlen * rate):
break
# Signal chunk too short? Fill with zeros.
if len(split) < int(rate * seconds):
temp = np.zeros((int(rate * seconds)))
temp[:len(split)] = split
split = temp
sig_splits.append(split)
return sig_splits
def readAudioData(path, overlap, sample_rate=48000):
print('READING AUDIO DATA...', end=' ', flush=True)
# Open file with librosa (uses ffmpeg or libav)
# sig, rate = librosa.load(path, sr=sample_rate, mono=True, res_type='kaiser_fast')
old_rate, old_sig = wavfile.read(path)
if len(old_sig.shape) == 2:
old_sig = old_sig[:,0]
if old_rate != sample_rate:
duration = old_sig.shape[0] / old_rate
time_old = np.linspace(0, duration, old_sig.shape[0])
time_new = np.linspace(0, duration, int(old_sig.shape[0] * sample_rate / old_rate))
interpolator = interpolate.interp1d(time_old, old_sig.T)
sig = interpolator(time_new).T
sig = np.round(sig).astype(old_sig.dtype)
else:
sig = old_sig
rate = sample_rate
# Split audio into 3-second chunks
chunks = splitSignal(sig, rate, overlap)
print('DONE! READ', str(len(chunks)), 'CHUNKS.')
return chunks
def convertMetadata(m):
# Convert week to cosine
if m[2] >= 1 and m[2] <= 48:
m[2] = math.cos(math.radians(m[2] * 7.5)) + 1
else:
m[2] = -1
# Add binary mask
mask = np.ones((3,))
if m[0] == -1 or m[1] == -1:
mask = np.zeros((3,))
if m[2] == -1:
mask[2] = 0.0
return np.concatenate([m, mask])
def custom_sigmoid(x, sensitivity=1.0):
return 1 / (1.0 + np.exp(-sensitivity * x))
def predict(sample, interpreter, sensitivity):
# Make a prediction
interpreter.set_tensor(INPUT_LAYER_INDEX, np.array(sample[0], dtype='float32'))
interpreter.set_tensor(MDATA_INPUT_INDEX, np.array(sample[1], dtype='float32'))
interpreter.invoke()
prediction = interpreter.get_tensor(OUTPUT_LAYER_INDEX)[0]
# Apply custom sigmoid
p_sigmoid = custom_sigmoid(prediction, sensitivity)
# Get label and scores for pooled predictions
p_labels = dict(zip(CLASSES, p_sigmoid))
# Sort by score
p_sorted = sorted(p_labels.items(), key=operator.itemgetter(1), reverse=True)
# Remove species that are on blacklist
for i in range(min(10, len(p_sorted))):
if p_sorted[i][0] in ['Human_Human', 'Non-bird_Non-bird', 'Noise_Noise']:
p_sorted[i] = (p_sorted[i][0], 0.0)
# Only return first the top ten results
return p_sorted[:10]
def analyzeAudioData(chunks, lat, lon, week, sensitivity, overlap, interpreter):
detections = {}
start = time.time()
print('ANALYZING AUDIO...', end=' ', flush=True)
# Convert and prepare metadata
mdata = convertMetadata(np.array([lat, lon, week]))
mdata = np.expand_dims(mdata, 0)
# Parse every chunk
pred_start = 0.0
for c in chunks:
# Prepare as input signal
sig = np.expand_dims(c, 0)
# Make prediction
p = predict([sig, mdata], interpreter, sensitivity)
# Save result and timestamp
pred_end = pred_start + 3.0
detections[str(pred_start) + ';' + str(pred_end)] = p
pred_start = pred_end - overlap
print('DONE! Time', int((time.time() - start) * 10) / 10.0, 'SECONDS')
return detections
def writeResultsToFile(allDetections, min_conf, path):
if os.path.isdir(path):
for dets_n, detections in enumerate(allDetections):
print('WRITING RESULTS TO', path, '...', end=' ')
rcnt = 0
with open(path + '/result_' + str(dets_n) + '.csv', 'w') as rfile:
rfile.write('Start (s);End (s);Scientific name;Common name;Confidence\n')
for d in detections:
for entry in detections[d]:
if entry[1] >= min_conf and (entry[0] in WHITE_LIST or len(WHITE_LIST) == 0):
rfile.write(d + ';' + entry[0].replace('_', ';') + ';' + str(entry[1]) + '\n')
rcnt += 1
print('DETECTIONS', dets_n, 'DONE! WROTE', rcnt, 'RESULTS.')
else:
print("Unexpected output path: {}, it must be an existing directory" .format(path))
def publishDatections(plugin, allDetections, timeStamps, args, min_conf, WHITE_LIST):
for i, (detections, timestamp) in enumerate(zip(allDetections, timeStamps)):
print('PUBLISHING DETECTION', i, '...', end=' ')
for d in detections:
times = d.split(';')
start_time = times[0]
end_time = times[1]
for entry in detections[d]:
if entry[1] >= min_conf and (entry[0] in WHITE_LIST or len(WHITE_LIST) == 0):
class_label = entry[0].split('_')
scientific_name = class_label[0].lower().replace(' ', '_')
common_name = class_label[1].lower()
common_name = ''.join(e for e in common_name if e.isalnum())
plugin.publish(f'env.detection.avian.{scientific_name}', str(entry[1]), timestamp=timestamp)
#plugin.publish(f'env.detection.avian.{start_time}', str(entry[1]), timestamp=timestamp, meta={'record_duration': args.sound_int})
#plugin.publish(f'env.detection.avian.{end_time}', str(entry[1]), timestamp=timestamp, meta={'record_duration': args.sound_int})
#plugin.publish(f'env.detection.avian.{scientific_name}', str(entry[1]), timestamp=timestamp, meta={'record_duration': args.sound_int})
#plugin.publish(f'env.detection.avian.{common_name}', str(entry[1]), timestamp=timestamp, meta={'record_duration': args.sound_int})
print('DONE!')
def main():
global WHITE_LIST
# Parse passed arguments
parser = argparse.ArgumentParser()
parser.add_argument('--num_rec', type=int, default=1, help='Number of microphone recordings. Each mic recording will be saved in a different file. Default to 1.')
parser.add_argument('--silence_int', type=float, default=1.0, help='Time interval [s] in which there is not sound recording. Default to 1.0.')
parser.add_argument('--sound_int', type=float, default=10.0, help='Time interval [s] in which there is sound recording. Default to 10.0.')
parser.add_argument('--i', help='Path to input file. If not specified, the plugin will record from the microphone')
parser.add_argument('--o', default='', help='Path to output file. Defaults to None.')
parser.add_argument('--filetype', default='wav', help='Filetype of soundscape recordings. Defaults to \'wav\'.')
parser.add_argument('--lat', type=float, default=-1, help='Recording location latitude. Set -1 to ignore.')
parser.add_argument('--lon', type=float, default=-1, help='Recording location longitude. Set -1 to ignore.')
parser.add_argument('--week', type=int, default=-1, help='Week of the year when the recording was made. Values in [1, 48] (4 weeks per month). Set -1 to ignore.')
parser.add_argument('--overlap', type=float, default=0.0, help='Overlap in seconds between extracted spectrograms. Values in [0.0, 2.9]. Defaults tp 0.0.')
parser.add_argument('--sensitivity', type=float, default=1.0, help='Detection sensitivity; Higher values result in higher sensitivity. Values in [0.5, 1.5]. Defaults to 1.0.')
parser.add_argument('--min_conf', type=float, default=0.1, help='Minimum confidence threshold. Values in [0.01, 0.99]. Defaults to 0.1.')
parser.add_argument('--custom_list', default='', help='Path to text file containing a list of species. Not used if not provided.')
parser.add_argument('--keep', action='store_true', help='Keeps all the input files collected from the mic.')
args = parser.parse_args()
enable_rm = False
with Plugin() as plugin:
with plugin.timeit("plugin.duration.loadmodel"):
# Load model
interpreter = loadModel()
# Load custom species list
if not args.custom_list == '':
WHITE_LIST = loadCustomSpeciesList(args.custom_list)
else:
WHITE_LIST = []
with plugin.timeit("plugin.duration.input"):
if args.i == None:
# Record audio from microphone
dir_name = "mic_dir_" + str(time.time())
os.mkdir(dir_name)
args.i = dir_name
audioRecording(args.i, args.num_rec, args.silence_int, args.sound_int, args.filetype)
enable_rm = True
audioData, timeStamps = readAudioDataset(args)
with plugin.timeit("plugin.duration.inference"):
# Process audio data and get detections
week = max(1, min(args.week, 48))
sensitivity = max(0.5, min(1.0 - (args.sensitivity - 1.0), 1.5))
allDetections = []
for data in audioData:
allDetections.append(analyzeAudioData(data, args.lat, args.lon, week, sensitivity, args.overlap, interpreter))
# Write detections to output file
min_conf = max(0.01, min(args.min_conf, 0.99))
if args.o:
writeResultsToFile(allDetections, min_conf, args.o)
# Publish detections
publishDatections(plugin, allDetections, timeStamps, args, min_conf, WHITE_LIST)
if not args.keep and enable_rm:
print('REMOVING THE INPUT COLLECTED BY THE MICROPHONE ...', end=' ')
shutil.rmtree(dir_name)
print('DONE!')
if __name__ == '__main__':
main()
# Example calls
# The following will produce 6 recording of 5 seconds each at 1 second silent intervals
# python3 analyze.py --num_rec 6 --sound_int 5 --lat 35.4244 --lon -120.7463 --week 18
# python3 analyze.py --num_rec 6 --sound_int 5 --lat 47.6766 --lon -122.294 --week 11 --overlap 1.5 --min_conf 0.25 --sensitivity 1.25 --custom_list 'example/custom_species_list.txt'