-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdehaze.py
71 lines (54 loc) · 2.1 KB
/
dehaze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import cv2
import math
import numpy as np
import sys
def apply_mask(matrix, mask, fill_value):
#print(flat[60])
#print(flat[11940])
masked = np.ma.array(matrix, mask=mask, fill_value=fill_value)
print('MASKED=',masked)
return masked.filled()
def apply_threshold(matrix, low_value, high_value):
low_mask = matrix < low_value
matrix = apply_mask(matrix, low_mask, low_value)
print('Low MASK->',low_mask,'\nMatrix->',matrix)
high_mask = matrix > high_value
matrix = apply_mask(matrix, high_mask, high_value)
return matrix
def simplest_cb(img, percent):
assert img.shape[2] == 3
assert percent > 0 and percent < 100
half_percent = percent / 200.0
print('HALF PERCENT->',half_percent)
channels = cv2.split(img)
print('Channels->\n',channels)
print('Shape->',channels[0].shape)
print('Shape of channels->',len(channels[2]))
out_channels = []
for channel in channels:
assert len(channel.shape) == 2
# find the low and high precentile values (based on the input percentile)
height, width = channel.shape
vec_size = width * height
flat = channel.reshape(vec_size)
print('vec=',vec_size,'\nFlat=',flat)
assert len(flat.shape) == 1
flat = np.sort(flat)
n_cols = flat.shape[0]
low_val = flat[math.floor(n_cols * half_percent)]
high_val = flat[math.ceil( n_cols * (1.0 - half_percent))]
print ("Lowval: ", low_val)
print ("Highval: ", high_val)
# saturate below the low percentile and above the high percentile
thresholded = apply_threshold(channel, low_val, high_val)
# scale the channel
normalized = cv2.normalize(thresholded, thresholded.copy(), 0, 255, cv2.NORM_MINMAX)
out_channels.append(normalized)
return cv2.merge(out_channels)
if __name__ == '__main__':
#img = cv2.imread(sys.argv[1])
img = cv2.imread('2a.jpg')
out = simplest_cb(img, 1)
cv2.imshow("Before", img)
cv2.imshow("After", out)
cv2.waitKey(0)