-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathlemmings.R
44 lines (38 loc) · 1.5 KB
/
lemmings.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
#Something with delay
## libraries
library(deSolve) # to solve
library(ggplot2) # to plot
## parameters: growth rate, carrying capacity and time lag
r <- 3.5; k <- 19; lag=0.74
## initial conditions: population size slightly
## larger than k at t=0 to start oscilations
yinit <- c(y = K + 0.001)
## Time vector: start sequence with minus (lag value);
## lag should be a multiple of time steps
## given in argument "by" of the sequence
times <- seq(-0.74, 40, by = 0.01)
## function to be derived
## contains a call for the special function 'lagvalue', from the deSolve
## ode library, that returns the values of the state variable (population size)
## in the time = time - lag
derivs <- function(t, y, parms) {
## This part returns the state variable at the time-lag if t>0
## For time<0 it returns the carrying capacity
## Meaning that the population was at k before t=0
if (t < 0)
y.lag <- k
else
y.lag <- lagvalue(t - lag)
## and here goes the expression to be integrated
dy <- r * y * (1 - y.lag/m)
## Output is the populatio sizes and the derivatives at each time
list(dy, dy = dy)
}
## solve the model with 'dede', the solver for models with delays
## see help page for details
out <- dede(y = yinit, times = times, func = derivs, parms = NULL, atol = 1e-10)
# plots
## Coerces output to a dataframe, necessary to ggplot
out.df = as.data.frame(out)
ggplot(data = out.df, aes(time, y)) + geom_line()
ggplot(data = out.df, aes(y, dy.y, color = time)) + geom_point()