-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunningachain_xtended_readjson.py
220 lines (185 loc) · 7.66 KB
/
runningachain_xtended_readjson.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 24 16:55:12 2020
uses recom proposal
@author: dpg
"""
import matplotlib.pyplot as plt
from gerrychain import (GeographicPartition, Partition, Graph, MarkovChain_xtended,
proposals, updaters, constraints, accept, Election)
from gerrychain.proposals import (recom, propose_random_flip)
from functools import partial
from gerrychain.constraints import single_flip_contiguous
from gerrychain.accept import always_accept
import pandas
import pandas as pd
import numpy as np
from gerrychain.metrics import mean_median, efficiency_gap, polsby_popper
from strcmp_matlab import strfilter
import time
from norm_50 import norm_data
from get_districtlabels import get_labels
from get_electioninfo import get_elections
from gerrychain.tree import recursive_tree_part
import backup_chain as bc
from total_splits import total_splits
from step_num import step_num
#SET CONSTANTS HERE:
dontfeedin = 0 #if set=0, feeds in data, otherwise skip
maxsplits = 50
markovchainlength = 500 #length of Markov chain
proposaltype = "recom" #"recom"
#exec(open("input_templates/WI_SEN_SEN16.py").read())
#exec(open("input_templates/PA_CD_2011_SEN12.py").read())
#exec(open("input_templates/MI_HDIST_PRES16.py").read())
#exec(open("input_templates/WI_SEN_SEN16.py").read())
#exec(open("input_templates/TX_USCD_SEN12.py").read())
#exec(open("input_templates/PA_REMEDIAL_SEN12.py").read())
exec(open("input_templates/OH_CD116_SEN16.py").read())
elections, composite = get_elections(state)
poptol = 0.03 # population tolerance
if 'dontfeedin' in globals():
if dontfeedin == 0 or not( 'graph_PA' in globals()):
if ".json" in my_electiondatafile:
graph_PA = Graph.from_json(my_electiondatafile)
else:
graph_PA = Graph.from_file(my_electiondatafile)
else:
if ".json" in my_electiondatafile:
graph_PA = Graph.from_json(my_electiondatafile)
else:
graph_PA = Graph.from_file(my_electiondatafile)
t0=time.time()
graph_PA.good=0
if "TOTPOP" in graph_PA._node[0]:
popkey = "TOTPOP"
elif "PERSONS" in graph_PA._node[0]:
popkey = "PERSONS"
else:
popkey = []
print("woops no popkey in file, look @ graph_PA._node[0] to figure out what the keyword for population is\n")
#CONFIGURE UPDATERS
#We want to set up updaters for everything we want to compute for each plan in the ensemble.
# Population updater, for computing how close to equality the district
# populations are. "TOTPOP" is the population column from our shapefile.
## for TX and PA:
#my_updaters = {"population": updaters.Tally("TOTPOP", alias="population")}
##for WI:
my_updaters = {"population": updaters.Tally(popkey, alias="population")}
totalsplit_updater = {"total_splits": total_splits}
my_updaters.update(totalsplit_updater)
step_updater = {"step_num" : step_num}
my_updaters.update(step_updater)
# Election updaters, for computing election results using the vote totals
# from our shapefile.
election_updaters = {election.name: election for election in elections}
my_updaters.update(election_updaters)
#INITIAL PARTITION
#initial_partition, graph_PA, my_updaters = norm_data(graph_PA, my_updaters, "CD_2011", "SEN12", "USS12")
#initial_partition = GeographicPartition(graph_PA, assignment=my_apportionment, updaters=my_updaters)
#initial_partition.good=0
cds = get_labels(initial_partition, my_electionproxy) #get congressional district labels
#SETUP MARKOV CHAIN PROPOSAL W RECOM
# The ReCom proposal needs to know the ideal population for the districts so that
# we can improve speed by bailing early on unbalanced partitions.
#ideal_population = sum(initial_partition["population"].values()) / len(initial_partition)
ideal_population = sum(list(initial_partition["population"].values())) / len(initial_partition)
# We use functools.partial to bind the extra parameters (pop_col, pop_target, epsilon, node_repeats)
# of the recom proposal.
#TX & PA:
#WI:
if "recom" in proposaltype:
proposal = partial(recom,
pop_col=popkey,
pop_target=ideal_population,
epsilon=poptol,
node_repeats=2
)
#CONSTRAINTS
compactness_bound = constraints.UpperBound(
lambda p: len(p["cut_edges"]),
2*len(initial_partition["cut_edges"])
)
pop_constraint = constraints.within_percent_of_ideal_population(initial_partition, poptol)
nparts = len(initial_partition)
#CONFIGURE MARKOV CHAIN
ranpart = recursive_tree_part(graph_PA, range(nparts), ideal_population, popkey, poptol,node_repeats=1)
randpartition = GeographicPartition(graph_PA,assignment = ranpart, updaters = my_updaters)
# exec(open("partition_clean.py").read())
#randpartition.good=0
chain = MarkovChain_xtended(
proposal=proposal,
constraints=[
pop_constraint,
compactness_bound
],
accept=accept.always_accept,
initial_state= initial_partition, #initial_state=initial_partition,
total_steps=markovchainlength,
maxsplits = maxsplits
)
else: #random flip
nparts = len(initial_partition)
ranpart = recursive_tree_part(graph_PA, range(nparts), ideal_population, popkey,poptol-0.02,node_repeats=1)
randpartition = GeographicPartition(graph_PA,assignment = ranpart, updaters = my_updaters)
chain = MarkovChain_xtended(
proposal=propose_random_flip,
constraints=[single_flip_contiguous],
accept=always_accept,
initial_state=initial_partition,
total_steps=markovchainlength
)
"""
#this version shows a progress bar (maybe)
data = pandas.datarame(
sorted(partition["SEN12"].percents("Democratic"))
for partition in chain.with_progress_bar()
)
"""
# This will take about 10 minutes.
# This will take about 10 minutes.
rsw = []
rmm = []
reg = []
rpp = []
data1 = pandas.DataFrame(sorted(initial_partition[my_electionproxy].percents("Democratic") ), index = cds)
data1=data1.transpose()
#data1.columns = congressdistrictlabels
#data1 = data1.transpose()
#data1 = pandas.DataFrame((initial_partition["SEN12"].percents("Democratic") ))
splitno=[]
for part in chain:
if (part.good == 1) :
rsw.append(part.state[my_electionproxy].wins("Democratic"))
rmm.append(mean_median(part.state[my_electionproxy]))
reg.append(efficiency_gap(part.state[my_electionproxy]))
rpp.append(np.mean(pd.Series(polsby_popper(part.state)))) #depends on geometry of the partition only not on vote outcomes
datax = pandas.DataFrame(sorted(part.state[my_electionproxy].percents("Democratic" )), index=cds)
datax = datax.transpose()
# data1 = pandas.concat([data1, pandas.DataFrame(part["SEN12"].percents("Democratic" ))],axis=1)
data1 = pandas.concat([data1, datax])
else:
print("oops no good\n")
print(total_splits(part.state),' \n')
splitno.append(total_splits(part.state))
fig, ax = plt.subplots(figsize=(8, 6))
# Draw 50% line
ax.axhline(0.5, color="#cccccc")
# Draw boxplot
data1.boxplot(ax=ax, positions=range(len(data1.columns)))
# Draw initial plan's Democratic vote %s (.iloc[0] gives the first row)
plt.plot(data1.iloc[0], "ro")
# Annotate
titlestr = state + " " + my_apportionment + " x" + str(markovchainlength)
ax.set_title(titlestr)
ax.set_ylabel("Democratic vote % " + my_electionproxy)
ax.set_xlabel("Sorted districts")
ax.set_ylim(0, 1)
ax.set_yticks([0, 0.25, 0.5, 0.75, 1])
plt.show()
# NORMALIZE AND REDO at 50% per each party
t1=time.time()
print((t1 - t0)/60 ," min runtime\n")
outname = "redist_data/" + state + "_" + my_apportionment + "_" + my_electionproxy + "x" + str(markovchainlength)
bc.save(outname,data1, reg, rmm, rsw, rpp)