forked from PaddlePaddle/PaddleSpeech
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.py
135 lines (123 loc) · 5.44 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
"""Inferer for DeepSpeech2 model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import functools
import paddle.v2 as paddle
from data_utils.data import DataGenerator
from model_utils.model import DeepSpeech2Model
from utils.error_rate import wer, cer
from utils.utility import add_arguments, print_arguments
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('num_samples', int, 10, "# of samples to infer.")
add_arg('trainer_count', int, 8, "# of Trainers (CPUs or GPUs).")
add_arg('beam_size', int, 500, "Beam search width.")
add_arg('num_proc_bsearch', int, 8, "# of CPUs for beam search.")
add_arg('num_conv_layers', int, 2, "# of convolution layers.")
add_arg('num_rnn_layers', int, 3, "# of recurrent layers.")
add_arg('rnn_layer_size', int, 2048, "# of recurrent cells per layer.")
add_arg('alpha', float, 2.5, "Coef of LM for beam search.")
add_arg('beta', float, 0.3, "Coef of WC for beam search.")
add_arg('cutoff_prob', float, 1.0, "Cutoff probability for pruning.")
add_arg('cutoff_top_n', int, 40, "Cutoff number for pruning.")
add_arg('use_gru', bool, False, "Use GRUs instead of simple RNNs.")
add_arg('use_gpu', bool, True, "Use GPU or not.")
add_arg('share_rnn_weights',bool, True, "Share input-hidden weights across "
"bi-directional RNNs. Not for GRU.")
add_arg('infer_manifest', str,
'data/librispeech/manifest.dev-clean',
"Filepath of manifest to infer.")
add_arg('mean_std_path', str,
'data/librispeech/mean_std.npz',
"Filepath of normalizer's mean & std.")
add_arg('vocab_path', str,
'data/librispeech/vocab.txt',
"Filepath of vocabulary.")
add_arg('lang_model_path', str,
'models/lm/common_crawl_00.prune01111.trie.klm',
"Filepath for language model.")
add_arg('model_path', str,
'./checkpoints/libri/params.latest.tar.gz',
"If None, the training starts from scratch, "
"otherwise, it resumes from the pre-trained model.")
add_arg('decoding_method', str,
'ctc_beam_search',
"Decoding method. Options: ctc_beam_search, ctc_greedy",
choices = ['ctc_beam_search', 'ctc_greedy'])
add_arg('error_rate_type', str,
'wer',
"Error rate type for evaluation.",
choices=['wer', 'cer'])
add_arg('specgram_type', str,
'linear',
"Audio feature type. Options: linear, mfcc.",
choices=['linear', 'mfcc'])
# yapf: disable
args = parser.parse_args()
def infer():
"""Inference for DeepSpeech2."""
data_generator = DataGenerator(
vocab_filepath=args.vocab_path,
mean_std_filepath=args.mean_std_path,
augmentation_config='{}',
specgram_type=args.specgram_type,
num_threads=1,
keep_transcription_text=True)
batch_reader = data_generator.batch_reader_creator(
manifest_path=args.infer_manifest,
batch_size=args.num_samples,
min_batch_size=1,
sortagrad=False,
shuffle_method=None)
infer_data = batch_reader().next()
ds2_model = DeepSpeech2Model(
vocab_size=data_generator.vocab_size,
num_conv_layers=args.num_conv_layers,
num_rnn_layers=args.num_rnn_layers,
rnn_layer_size=args.rnn_layer_size,
use_gru=args.use_gru,
pretrained_model_path=args.model_path,
share_rnn_weights=args.share_rnn_weights)
# decoders only accept string encoded in utf-8
vocab_list = [chars.encode("utf-8") for chars in data_generator.vocab_list]
if args.decoding_method == "ctc_greedy":
ds2_model.logger.info("start inference ...")
probs_split = ds2_model.infer_batch_probs(infer_data=infer_data,
feeding_dict=data_generator.feeding)
result_transcripts = ds2_model.decode_batch_greedy(
probs_split=probs_split,
vocab_list=vocab_list)
else:
ds2_model.init_ext_scorer(args.alpha, args.beta, args.lang_model_path,
vocab_list)
ds2_model.logger.info("start inference ...")
probs_split = ds2_model.infer_batch_probs(infer_data=infer_data,
feeding_dict=data_generator.feeding)
result_transcripts = ds2_model.decode_batch_beam_search(
probs_split=probs_split,
beam_alpha=args.alpha,
beam_beta=args.beta,
beam_size=args.beam_size,
cutoff_prob=args.cutoff_prob,
cutoff_top_n=args.cutoff_top_n,
vocab_list=vocab_list,
num_processes=args.num_proc_bsearch)
error_rate_func = cer if args.error_rate_type == 'cer' else wer
target_transcripts = [data[1] for data in infer_data]
for target, result in zip(target_transcripts, result_transcripts):
print("\nTarget Transcription: %s\nOutput Transcription: %s" %
(target, result))
print("Current error rate [%s] = %f" %
(args.error_rate_type, error_rate_func(target, result)))
ds2_model.logger.info("finish inference")
def main():
print_arguments(args)
paddle.init(use_gpu=args.use_gpu,
rnn_use_batch=True,
trainer_count=args.trainer_count)
infer()
if __name__ == '__main__':
main()