-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmantid_reader.py
428 lines (352 loc) · 15.4 KB
/
mantid_reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
from __future__ import annotations
import logging
import xml.etree.ElementTree as ET
from typing import Dict, Tuple
import h5py
import numpy as np
import mantid_utils
from experiment_reader import ExperimentReader, Panel, PeakTable
from typing_utils import Array
vec2int = Array["2", int]
logger = logging.getLogger(__name__)
class MantidReader(ExperimentReader):
"""
Class to access and hold data from Mantid .nxs (NeXus) files
See https://docs.mantidproject.org/nightly/concepts/NexusFile.html
"""
_xml_path = "mantid_workspace_1/instrument/instrument_xml/data"
_peaks_workspace_path = "mantid_workspace_1/peaks_workspace"
_process_path = "mantid_workspace_1/process"
_peak_workspace_columns = {
"column_1": "spectra_idx_1D",
"column_2": "miller_idx_h",
"column_3": "miller_idx_k",
"column_4": "miller_idx_l",
"column_5": "intensity",
"column_8": "energy",
"column_9": "energy",
"column_10": "wavelength",
"column_12": "d_spacing",
"column_13": "tof",
}
_peak_workspace_fixed_columns = ("column_11", "column_14", "column_15", "column_16")
_peak_workspace_types = {
"column_1": np.dtype("<i4"),
"column_2": np.dtype("<f8"),
"column_3": np.dtype("<f8"),
"column_4": np.dtype("<f8"),
"column_5": np.dtype("<f8"),
"column_6": np.dtype("<f8"),
"column_7": np.dtype("<f8"),
"column_8": np.dtype("<f8"),
"column_9": np.dtype("<f8"),
"column_10": np.dtype("<f8"),
"column_11": np.dtype("<f8"),
"column_12": np.dtype("<f8"),
"column_13": np.dtype("<f8"),
"column_14": np.dtype("<i4"),
"column_15": np.dtype("<f8"),
"column_16": np.dtype("|S24"),
"column_17": np.dtype("<i4"),
"column_18": np.dtype("<f8"),
}
# The second dimension size for 2D columns
_peak_workspace_shapes = {"column_15": 9, "column_16": 1}
def __init__(self, nxs_file_path: str):
self.file_path = nxs_file_path
self._nxs_file = None
self._xml = None
def _open(self, mode: str = "r", expt_idx: int = 0, open_xml: bool = True) -> None:
if self._nxs_file is not None:
return
self._nxs_file = h5py.File(self.file_path, mode)
if open_xml:
self._open_xml(expt_idx=expt_idx)
def _open_xml(self, expt_idx: int = 0) -> None:
self._xml = ET.fromstring(self._nxs_file[self._xml_path][expt_idx].decode())
def _close(self) -> None:
self._close_xml()
self._nxs_file.close()
self._nxs_file = None
def _close_xml(self) -> None:
self._xml = None
def get_panels(self, expt_idx: int = 0) -> Tuple[Panel, ...]:
def get_rotation_vals(rot):
val = float(rot.attrib["val"])
x = int(rot.attrib["axis-x"])
y = int(rot.attrib["axis-y"])
z = int(rot.attrib["axis-z"])
return (val, (x, y, z))
def get_rotations(line, rotations):
rotations.append(get_rotation_vals(line))
try:
return get_rotations(line[0], rotations=rotations)
except IndexError:
return rotations
def get_panel_orentation(name: str) -> Tuple[vec2int, vec2int]:
"""
This is a hack for SXD, where the Mantid SXD_Definition.xml
does not seem to identify SXD panel 1 as upsidedown.
"""
if name == "bank1":
return np.array((0, -1)), np.array((-1, 0))
else:
return np.array((1, 0)), np.array((0, 1))
self._open(mode="r", expt_idx=expt_idx)
panels = []
panel_types = self.get_panel_types(self._xml)
for child in self._xml:
if self._is_panel(child):
panel = child[0]
name = panel.attrib["name"]
idx = mantid_utils.panel_name_to_idx(name)
x = float(panel.attrib["x"])
y = float(panel.attrib["y"])
z = float(panel.attrib["z"])
rotation_start = panel[0]
rotations = []
rotations = get_rotations(
line=rotation_start,
rotations=rotations,
)
panel_type = child.attrib["type"]
panel_info = panel_types[panel_type]
zeroth_pixel_origin = (panel_info["xstart"], panel_info["ystart"])
gam_in_deg, nu_in_deg = mantid_utils.rotations_to_spherical_coordinates(
zeroth_pixel_origin=zeroth_pixel_origin, rotations=rotations
)
num_pixels = (
panel_info["xpixels"],
panel_info["ypixels"],
)
pixel_size_in_m = (panel_info["xpixel_size"], panel_info["ypixel_size"])
# TODO needs orientation information
# Mantid does not appear to see SXD panel 1 as upsidedown
x_or, y_or = get_panel_orentation(name=name)
panels.append(
Panel(
idx=idx,
centre_origin_in_m=(x, y, z),
gam_in_deg=gam_in_deg,
nu_in_deg=nu_in_deg,
num_pixels=num_pixels,
pixel_size_in_m=pixel_size_in_m,
x_orientation=x_or,
y_orientation=y_or,
)
)
self._close()
logger.debug(f"Extracted {len(panels)} panels.")
return tuple(panels)
def get_panel_types(self, xml):
panel_types = {}
for child in xml:
if self._is_panel_settings(child):
key = child.attrib["name"]
xstart = float(child.attrib["xstart"])
ystart = float(child.attrib["ystart"])
xpixels = int(child.attrib["xpixels"])
ypixels = int(child.attrib["ypixels"])
xpixel_size = abs(float(child.attrib["xstep"]))
ypixel_size = abs(float(child.attrib["ystep"]))
panel_types[key] = {
"xstart": xstart,
"ystart": ystart,
"xpixels": xpixels,
"ypixels": ypixels,
"xpixel_size": xpixel_size,
"ypixel_size": ypixel_size,
}
logger.debug(f"Extracted {len(panel_types)} panel types.")
return panel_types
def replace_panels(self, new_panels: Tuple[Panel, ...], expt_idx: int = 0) -> None:
def set_rotations(rotation_line, rotations, idx=0):
"""
Recursively set rotations in self._xml
"""
if idx < len(rotations):
rotation_line.set("val", str(rotations[idx][0]))
rotation_line.set("axis-x", str(rotations[idx][1][0]))
rotation_line.set("axis-y", str(rotations[idx][1][1]))
rotation_line.set("axis-z", str(rotations[idx][1][2]))
idx += 1
if idx < len(rotations):
# If there is still a rotation to set but it does not exist
# create it
try:
set_rotations(rotation_line[0], rotations, idx)
except IndexError:
new_line = ET.SubElement(rotation_line, "rot")
new_line.set("val", "")
new_line.set("axis-x", "")
new_line.set("axis-y", "")
new_line.set("axis-z", "")
set_rotations(new_line, rotations, idx)
self._open(mode="r+", expt_idx=expt_idx)
panel_dict = {mantid_utils.panel_idx_to_name(i.idx): i for i in new_panels}
panel_types = self.get_panel_types(self._xml)
panel_mod_count = 0
for child in self._xml:
if self._is_panel(child):
panel_type = child.attrib["type"]
panel = child[0]
name = panel.attrib["name"]
if name in panel_dict:
new_panel = panel_dict[name]
panel_info = panel_types[panel_type]
x, y, z = new_panel.centre_origin_in_m
panel.attrib["x"] = str(x)
panel.attrib["y"] = str(y)
panel.attrib["z"] = str(z)
zeroth_pixel_origin = (panel_info["xstart"], panel_info["ystart"])
rotations = mantid_utils.spherical_coordinates_to_rotations(
gam=new_panel.gam_in_deg,
nu=new_panel.nu_in_deg,
zeroth_pixel_origin=zeroth_pixel_origin,
)
set_rotations(panel[0], rotations=rotations)
panel_mod_count += 1
ET.register_namespace("xsi", "http://www.w3.org/2001/XMLSchema-instance")
ET.register_namespace("", "http://www.mantidproject.org/IDF/1.0")
self._nxs_file[self._xml_path][...] = ET.tostring(
self._xml, encoding="ASCII", method="xml"
)
logger.debug(f"Replaced {panel_mod_count} panels.")
self._close()
def _is_panel(self, tree_component):
if "type" not in tree_component.attrib:
return False
return (
"panel" in tree_component.attrib["type"]
and "location" in tree_component[0].tag
)
def _is_panel_settings(self, tree_element):
required_fields = ["xstart", "ystart", "xpixels", "ypixels", "xstep", "ystep"]
for i in required_fields:
if i not in tree_element.attrib:
return False
return True
def get_peak_table(self, expt_idx: int = 0) -> PeakTable:
raise NotImplementedError
def get_peak_table_file_path(self, expt_idx: int = 0) -> str:
return self.file_path
def has_peak_table(self, expt_idx: int = 0) -> bool:
self._open(mode="r+", expt_idx=expt_idx, open_xml=False)
try:
_ = self._nxs_file[self._peaks_workspace_path]
self._close()
return True
except KeyError:
self._close()
return False
def replace_peak_table(self, new_peak_table: PeakTable, expt_idx: int = 0) -> None:
"""
Updates peaks workspace at self._peaks_workspace_path with values in new_peak_table.
Data that are not in new_peak_table are replaced with zero values,
unless they are in columns self._peak_workspace_fixed_columns,
where they are just sliced or padded with the zeroth idx value.
"""
def get_resized_array(arr: np.array, new_size: int) -> np.array:
"""
Returns copy of arr resized to new_size using zeroth idx element for padding,
taking into account the shape of arr.
"""
if len(arr) > new_size:
return arr[:new_size]
if arr.ndim == 1:
pad_val = arr[0]
return np.pad(
arr, ((0, new_size)), mode="constant", constant_values=pad_val
)
elif arr.ndim == 2:
pad_val = arr[0, 0]
return np.pad(
arr,
((0, new_size), (0, 0)),
mode="constant",
constant_values=pad_val,
)
raise NotImplementedError("Cannot handle columns with dimensions > 2")
def get_zero_array(column: str, arr_size: int) -> np.array:
"""
Returns an array of arr_size with all elements as 0,
taking into account the shape required by column.
"""
shape_2d = self._peak_workspace_shapes.get(column)
if shape_2d is not None:
return np.zeros(arr_size * shape_2d).reshape(arr_size, shape_2d)
return np.zeros(arr_size)
def get_column_attributes(column: "h5py.dataset") -> Dict[str, np.bytes_]:
"""
Gets the attributes for a given peak table
column and returns them.
"""
attrib_dict = {}
for i in column.attrs.items():
attrib_dict[i[0]] = i[1]
return attrib_dict
def set_column_attributes(
column: "h5py.dataset", attrib_dict: Dict[str, np.bytes_]
) -> None:
"""
Creates attribute columns for column based on values in attrib_dict.
"""
tid = h5py.h5t.TypeID.copy(h5py.h5t.C_S1)
tid.set_strpad(h5py.h5t.STR_NULLTERM)
sid = h5py.h5s.create(0)
for i in attrib_dict:
h5py.h5a.create(
loc=column.id, name=i.encode("ASCII"), tid=tid, space=sid
)
column.attrs.__setitem__(i, np.array(attrib_dict[i], dtype="S"))
if not self.has_peak_table(expt_idx=expt_idx):
raise ValueError(
f"Tried to get PeakTable but not found in {self.file_path}"
)
self._open(mode="r+", expt_idx=expt_idx, open_xml=False)
# peak workspace
pws = self._nxs_file[self._peaks_workspace_path]
# map of workspace columns to PeakTable values
pws_d = self._peak_workspace_columns
# datatypes for each column
pws_dt = self._peak_workspace_types
# Mantid stores each miller index in a different column
miller_idx_h = np.array([i[0] for i in new_peak_table["miller_indices"]])
miller_idx_k = np.array([i[1] for i in new_peak_table["miller_indices"]])
miller_idx_l = np.array([i[2] for i in new_peak_table["miller_indices"]])
miller_idxs = {"h": miller_idx_h, "k": miller_idx_k, "l": miller_idx_l}
size = len(new_peak_table)
for column in list(pws.keys()):
column_attributes = get_column_attributes(column=pws[column])
# Coordinate system is not modified
if column == "coordinate_system":
continue
# Just resize these columns (e.g. run number)
if column in self._peak_workspace_fixed_columns:
data = get_resized_array(arr=pws[column][:], new_size=size)
del pws[column]
pws.create_dataset(column, data=np.array(data, dtype=pws_dt[column]))
# Pad with zeros all unknown columns
elif column not in self._peak_workspace_columns:
del pws[column]
pws.create_dataset(
column,
data=get_zero_array(column=column, arr_size=size),
dtype=pws_dt[column],
)
# Miller indices are stored in separate columns in Mantid
elif "miller_idx" in self._peak_workspace_columns[column]:
del pws[column]
pws.create_dataset(
column,
data=np.array(miller_idxs[pws_d[column][-1]], dtype=pws_dt[column]),
)
# Upate with value from PeakTable, ensuring dtype is correct
else:
del pws[column]
pws.create_dataset(
column,
data=np.array(new_peak_table[pws_d[column]], dtype=pws_dt[column]),
)
set_column_attributes(column=pws[column], attrib_dict=column_attributes)
self._close()