-
Notifications
You must be signed in to change notification settings - Fork 1
/
mp_funcs.py
61 lines (52 loc) · 3.13 KB
/
mp_funcs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import cv2
import numpy as np
import os
import json
import pandas as pd
import mediapipe as mp
mp_holistic = mp.solutions.holistic # holistic model
mp_drawing = mp.solutions.drawing_utils # drawing utilities
def mediapipe_detection(image, model):
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # color conversion
image.flags.writeable = False # img no longer writeable
pred = model.process(image) # make landmark prediction
image.flags.writeable = True # img now writeable
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # color reconversion
return image, pred
def draw(image, results):
mp_drawing.draw_landmarks(image, results.face_landmarks, mp_holistic.FACEMESH_TESSELATION,
mp_drawing.DrawingSpec(color=(0,0,255), thickness=3, circle_radius=3),
mp_drawing.DrawingSpec(color=(0,0,0), thickness=1, circle_radius=0))
mp_drawing.draw_landmarks(image, results.pose_landmarks, mp_holistic.POSE_CONNECTIONS,
mp_drawing.DrawingSpec(color=(0,150,0), thickness=3, circle_radius=3),
mp_drawing.DrawingSpec(color=(0,0,0), thickness=2, circle_radius=2))
mp_drawing.draw_landmarks(image, results.left_hand_landmarks, mp_holistic.HAND_CONNECTIONS,
mp_drawing.DrawingSpec(color=(200,56,12), thickness=3, circle_radius=3),
mp_drawing.DrawingSpec(color=(0,0,0), thickness=2, circle_radius=2))
mp_drawing.draw_landmarks(image, results.right_hand_landmarks, mp_holistic.HAND_CONNECTIONS,
mp_drawing.DrawingSpec(color=(250,56,12), thickness=3, circle_radius=3),
mp_drawing.DrawingSpec(color=(0,0,0), thickness=2, circle_radius=2))
def extract_coordinates(results):
face = np.array([[res.x, res.y, res.z] for res in results.face_landmarks.landmark]) if results.face_landmarks else np.empty((468, 3))*np.nan
pose = np.array([[res.x, res.y, res.z] for res in results.pose_landmarks.landmark]) if results.pose_landmarks else np.empty((33, 3))*np.nan
lh = np.array([[res.x, res.y, res.z] for res in results.left_hand_landmarks.landmark]) if results.left_hand_landmarks else np.empty((21, 3))*np.nan
rh = np.array([[res.x, res.y, res.z] for res in results.right_hand_landmarks.landmark]) if results.right_hand_landmarks else np.empty((21, 3))*np.nan
return np.concatenate([face, lh, pose, rh])
# cap = cv2.VideoCapture(0)
# final_landmarks=[]
# with mp_holistic.Holistic(min_detection_confidence=0.5, min_tracking_confidence=0.5) as holistic:
# while cap.isOpened():
# ret, frame = cap.read()
# if not ret:
# break
# image, results = mediapipe_detection(frame, holistic)
# #draw(image, results)
# landmarks = extract_coordinates(results)
# #print(len(landmarks))
# final_landmarks.extend(landmarks)
# #cv2.imshow('Hello',image)
# cv2.imshow('Webcam Feed',image)
# if cv2.waitKey(10) & 0xFF == ord("q"):
# break
# df1 = pd.DataFrame(final_landmarks,columns=['x','y','z'])
# df1.to_csv("colours.csv",index=False)