Skip to content

Latest commit

 

History

History
93 lines (64 loc) · 2.72 KB

README.md

File metadata and controls

93 lines (64 loc) · 2.72 KB

1. Brief

CUDA Video Decoder (CUVID)

Wang Yumeng ([email protected])

A video decoder library that supports H264, HEVC(H265) videos from file or RTSP.

2. Dependencies

2.1 Building System

Basic dependencies for projects

sudo apt update
sudo apt install build-essential cmake libgoogle-glog-dev libgflags-dev libssl-dev libavcodec-dev libavformat-dev libswscale-dev

如果安装的 CMake 低于 3.0.0 版本则无法运行安装:

cmake --version

可从源代码直接编译生成 CMake:

CMAKE_VERSION=3.23.2
sudo apt remove cmake --purge
wget "https://github.com/Kitware/CMake/releases/download/v$CMAKE_VERSION/cmake-$CMAKE_VERSION.tar.gz"
tar -xvf cmake-$CMAKE_VERSION.tar.gz
cd cmake-$CMAKE_VERSION
./bootstrap --parallel=8
make -j8
sudo make install -j8

2.2. CUDA

确保 CUDA 安装在 /usr/local/cuda ,并确认本地磁盘中存在 libnvcuvid.so 文件。

在 Ubuntu 系统中该文件通常位于 /usr/lib/x86_64-linux-gnu 目录中,并带有版本后缀,如 libnvcuvid.so.1

如果通过搜索仍未在磁盘中找到该文件,则说明你所安装的显卡驱动不完整,应重新安装显卡驱动 (必须是 460.32.03 以上版本) ,官方驱动包中均带有此文件。

如果仅找到 libnvcuvid.so.1 而没有 libnvcuvid.so ,那你还需要为 libnvcuvid.so.1 在相同目录下建立一个名为 libnvcuvid.so 的软链接:

sudo ln -s libnvcuvid.so.1 libnvcuvid.so

2.3. Python3

Numpy is required for Python3 interface:

python3 -m pip install numpy

PyTorch is required if you want to read frame buffer into pytorch tensor (CUDA) without via CPU copy. Installation of PyTorch See https://pytorch.org/

3. Build

在 cuvid 工程目录下执行下列命令:

mkdir build
cd build
cmake .. -DNVCUVID_LIBRARY_DIR=/usr/lib/x86_64-linux-gnu -DCUDA_ARCHITECTURES=75 -DCMAKE_INSTALL_PREFIX=install -DCMAKE_BUILD_TYPE=DEBUG
make all -j8
sudo make install

注意:

  • 如果 libnvcuvid.so 文件处于默认路径 /usr/lib/x86_64-linux-gnu 中,则不用设定 NVCUVID_LIBRARY_DIR 变量,否则必须设定 NVCUVID_LIBRARY_DIR 为所在路径。
  • 需要根据当前显卡的类型来配置 CUDA_ARCHITECTURES ,详见 https://zhuanlan.zhihu.com/p/438939299
  • 如果你在使用 Conda 环境,请确保在执行 cmake 命令前,当前 Conda 环境处于激活状态: conda activate
  • 如需使用 C++ 接口,请设置 CMAKE_INSTALL_PREFIX/usr/local

4. Run Test

python3 ./test/test.py test.mp4 --torch

5. C++ Project Link to Cuvid

Add following line into your CMakeLists.txt:

TARGET_LINK_LIBRARIES(YOUR_PRJ_NAME nvcuvid cuda avformat avcodec avutil)