forked from JiafengZhou/-tensorflow-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtf_demo9_1.py
171 lines (100 loc) · 4.66 KB
/
tf_demo9_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
max_steps = 1000
learning_rate = 0.001
dropout = 0.9
data_dir = "MNIST_data/"
log_dir = "MNIST_data/logs/mnist_with_summaries"
mnist = input_data.read_data_sets(data_dir,one_hot=True)
#sess = tf.InteractiveSession
with tf.name_scope('input'):
x = tf.placeholder(tf.float32, [None,784], name='x-input')
y_ = tf.placeholder(tf.float32, [None,10], name='x-input')
with tf.name_scope('input_reshape'):
image_shaped_input = tf.reshape(x,[-1,28,28,1])
tf.summary.image('input', image_shaped_input, 10)
def weight_variable(shape):
initial = tf.truncated_normal(shape , stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1,shape=shape)
return tf.Variable(initial)
def variable_summaries(var):
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.summary.scalar('mean',mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
tf.summary.scalar('stddev',stddev)
tf.summary.scalar('max',tf.reduce_max(var))
tf.summary.scalar('min',tf.reduce_min(var))
tf.summary.histogram('histogram', var)
def nn_layer(input_tensor,input_dim,output_dim,layer_name,act=tf.nn.relu):
with tf.name_scope(layer_name):
with tf.name_scope('weight'):
weights = weight_variable([input_dim,output_dim])
variable_summaries(weights)
with tf.name_scope('bias'):
biases = bias_variable([output_dim])
variable_summaries(biases)
with tf.name_scope('Wx_plus_b'):
preactivate = tf.matmul(input_tensor,weights) + biases
tf.summary.histogram('pre_activations',preactivate)
activations = act(preactivate,name='activations')
tf.summary.histogram('activations',activations)
return activations
hidden1 = nn_layer(x, 784, 500, 'layer1')
with tf.name_scope('dropout'):
keep_prob = tf.placeholder(tf.float32)
tf.summary.scalar('dropout_keep_probablility',keep_prob)
dropped = tf.nn.dropout(hidden1,keep_prob)
y = nn_layer(dropped, 500, 10, 'layer2',act=tf.identity)
with tf.name_scope('cross_entropy'):
diff = tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_)
with tf.name_scope('total1'):
cross_entroy = tf.reduce_mean(diff)
tf.summary.scalar('cross_entropy',cross_entroy)
with tf.name_scope('train'):
train_step = tf.train.AdamOptimizer(learning_rate).minimize(cross_entroy)
with tf.name_scope('accuracy'):
with tf.name_scope('correct_prediction'):
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
with tf.name_scope('accuracy'):
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar('accuracy',accuracy)
merged = tf.summary.merge_all()
init = tf.initialize_all_variables()
sess = tf.Session()
with sess.as_default():
train_writer = tf.summary.FileWriter(log_dir + '/train')
test_writer = tf.summary.FileWriter(log_dir + '/test')
tf.global_variables_initializer().run()
def feed_dict(train):
if(train):
xs,ys = mnist.train.next_batch(100)
k = dropout
else:
xs,ys = mnist.test.images,mnist.test.labels
k = 1.0
return {x:xs,y_:ys,keep_prob:k}
saver = tf.train.Saver()
for i in range(max_steps):
if i % 10 == 0:
summary,acc = sess.run([merged,accuracy],feed_dict=feed_dict(False))
test_writer.add_summary(summary,i)
print('Accuracy at step %s:%s'%(i,acc))
else:
if i %100 == 99:
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
summary,_ = sess.run([merged,train_step],feed_dict=feed_dict(True),
options=run_options,run_metadata=run_metadata)
train_writer.add_run_metadata(run_metadata, 'step%03d' % i)
train_writer.add_summary(summary, i)
saver.save(sess,log_dir+"/model.ckpt",i)
print('Adding run metadata for',i)
else:
summary, _ = sess.run([merged,train_step],feed_dict=feed_dict(True))
train_writer.add_summary(summary,i)
train_writer.close()
test_writer.close()