-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy pathdogleg.c
219 lines (173 loc) · 6.12 KB
/
dogleg.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
/* dogleg.f -- translated by f2c (version 20020621).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "cminpack.h"
#include <math.h>
#include "cminpackP.h"
/* Table of constant values */
__cminpack_attr__
void __cminpack_func__(dogleg)(int n, const real *r, int lr,
const real *diag, const real *qtb, real delta, real *x,
real *wa1, real *wa2)
{
/* System generated locals */
real d1, d2, d3, d4;
/* Local variables */
int i, j, k, l, jj, jp1;
real sum, temp, alpha, bnorm;
real gnorm, qnorm, epsmch;
real sgnorm;
/* ********** */
/* subroutine dogleg */
/* given an m by n matrix a, an n by n nonsingular diagonal */
/* matrix d, an m-vector b, and a positive number delta, the */
/* problem is to determine the convex combination x of the */
/* gauss-newton and scaled gradient directions that minimizes */
/* (a*x - b) in the least squares sense, subject to the */
/* restriction that the euclidean norm of d*x be at most delta. */
/* this subroutine completes the solution of the problem */
/* if it is provided with the necessary information from the */
/* qr factorization of a. that is, if a = q*r, where q has */
/* orthogonal columns and r is an upper triangular matrix, */
/* then dogleg expects the full upper triangle of r and */
/* the first n components of (q transpose)*b. */
/* the subroutine statement is */
/* subroutine dogleg(n,r,lr,diag,qtb,delta,x,wa1,wa2) */
/* where */
/* n is a positive integer input variable set to the order of r. */
/* r is an input array of length lr which must contain the upper */
/* triangular matrix r stored by rows. */
/* lr is a positive integer input variable not less than */
/* (n*(n+1))/2. */
/* diag is an input array of length n which must contain the */
/* diagonal elements of the matrix d. */
/* qtb is an input array of length n which must contain the first */
/* n elements of the vector (q transpose)*b. */
/* delta is a positive input variable which specifies an upper */
/* bound on the euclidean norm of d*x. */
/* x is an output array of length n which contains the desired */
/* convex combination of the gauss-newton direction and the */
/* scaled gradient direction. */
/* wa1 and wa2 are work arrays of length n. */
/* subprograms called */
/* minpack-supplied ... dpmpar,enorm */
/* fortran-supplied ... dabs,dmax1,dmin1,dsqrt */
/* argonne national laboratory. minpack project. march 1980. */
/* burton s. garbow, kenneth e. hillstrom, jorge j. more */
/* ********** */
/* Parameter adjustments */
--wa2;
--wa1;
--x;
--qtb;
--diag;
--r;
(void)lr;
/* Function Body */
/* epsmch is the machine precision. */
epsmch = __cminpack_func__(dpmpar)(1);
/* first, calculate the gauss-newton direction. */
jj = n * (n + 1) / 2 + 1;
for (k = 1; k <= n; ++k) {
j = n - k + 1;
jp1 = j + 1;
jj -= k;
l = jj + 1;
sum = 0.;
if (n >= jp1) {
for (i = jp1; i <= n; ++i) {
sum += r[l] * x[i];
++l;
}
}
temp = r[jj];
if (temp == 0.) {
l = j;
for (i = 1; i <= j; ++i) {
/* Computing MAX */
d2 = fabs(r[l]);
temp = max(temp,d2);
l = l + n - i;
}
temp = epsmch * temp;
if (temp == 0.) {
temp = epsmch;
}
}
x[j] = (qtb[j] - sum) / temp;
}
/* test whether the gauss-newton direction is acceptable. */
for (j = 1; j <= n; ++j) {
wa1[j] = 0.;
wa2[j] = diag[j] * x[j];
}
qnorm = __cminpack_func__(enorm)(n, &wa2[1]);
if (qnorm <= delta) {
return;
}
/* the gauss-newton direction is not acceptable. */
/* next, calculate the scaled gradient direction. */
l = 1;
for (j = 1; j <= n; ++j) {
temp = qtb[j];
for (i = j; i <= n; ++i) {
wa1[i] += r[l] * temp;
++l;
}
wa1[j] /= diag[j];
}
/* calculate the norm of the scaled gradient and test for */
/* the special case in which the scaled gradient is zero. */
gnorm = __cminpack_func__(enorm)(n, &wa1[1]);
sgnorm = 0.;
alpha = delta / qnorm;
if (gnorm != 0.) {
/* calculate the point along the scaled gradient */
/* at which the quadratic is minimized. */
for (j = 1; j <= n; ++j) {
wa1[j] = wa1[j] / gnorm / diag[j];
}
l = 1;
for (j = 1; j <= n; ++j) {
sum = 0.;
for (i = j; i <= n; ++i) {
sum += r[l] * wa1[i];
++l;
}
wa2[j] = sum;
}
temp = __cminpack_func__(enorm)(n, &wa2[1]);
sgnorm = gnorm / temp / temp;
/* test whether the scaled gradient direction is acceptable. */
alpha = 0.;
if (sgnorm < delta) {
/* the scaled gradient direction is not acceptable. */
/* finally, calculate the point along the dogleg */
/* at which the quadratic is minimized. */
bnorm = __cminpack_func__(enorm)(n, &qtb[1]);
temp = bnorm / gnorm * (bnorm / qnorm) * (sgnorm / delta);
/* Computing 2nd power */
d1 = sgnorm / delta;
/* Computing 2nd power */
d2 = temp - delta / qnorm;
/* Computing 2nd power */
d3 = delta / qnorm;
/* Computing 2nd power */
d4 = sgnorm / delta;
temp = temp - delta / qnorm * (d1 * d1)
+ sqrt(d2 * d2
+ (1 - d3 * d3) * (1 - d4 * d4));
/* Computing 2nd power */
d1 = sgnorm / delta;
alpha = delta / qnorm * (1 - d1 * d1) / temp;
}
}
/* form appropriate convex combination of the gauss-newton */
/* direction and the scaled gradient direction. */
temp = (1 - alpha) * min(sgnorm,delta);
for (j = 1; j <= n; ++j) {
x[j] = temp * wa1[j] + alpha * x[j];
}
/* last card of subroutine dogleg. */
} /* dogleg_ */