-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpreprocess.py
146 lines (101 loc) · 4.87 KB
/
preprocess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import os
from glob import glob
import shutil
from tqdm import tqdm
# import dicom2nifti
import numpy as np
# import nibabel as nib
from monai.transforms import(
Compose,
EnsureChannelFirstd,
LoadImaged,
Resized,
ToTensord,
Spacingd,
Orientationd,
ScaleIntensityRanged,
CropForegroundd,
)
from monai.data import DataLoader, Dataset, CacheDataset
from monai.utils import set_determinism
"""
PREPROCESS
"""
def create_groups(in_dir, out_dir, Number_slices):
for patient in glob(in_dir + '/*'):
patient_name = os.path.basename(os.path.normpath(patient))
# Here we need to calculate the number of folders which mean into how many groups we will divide the number of slices
number_folders = int(len(glob(patient + '/*')) / Number_slices)
for i in range(number_folders):
output_path = os.path.join(out_dir, patient_name + '_' + str(i))
os.mkdir(output_path)
# Move the slices into a specific folder so that you will save memory in your desk
for i, file in enumerate(glob(patient + '/*')):
if i == Number_slices + 1:
break
shutil.move(file, output_path)
# def dcm2nifti(in_dir, out_dir):
# for folder in tqdm(glob(in_dir + '/*')):
# patient_name = os.path.basename(os.path.normpath(folder))
# dicom2nifti.dicom_series_to_nifti(folder, os.path.join(out_dir, patient_name + '.nii.gz'))
# def find_empy(in_dir):
# list_patients = []
# for patient in glob(os.path.join(in_dir, '*')):
# img = nib.load(patient)
# if len(np.unique(img.get_fdata())) > 2:
# print(os.path.basename(os.path.normpath(patient)))
# list_patients.append(os.path.basename(os.path.normpath(patient)))
# return list_patients
def prepare(in_dir, pixdim=(1.5, 1.5, 1.0), a_min=-200, a_max=200, spatial_size=[128,128,64], cache=False):
set_determinism(seed=0)
def sort_by_liver_number(file_path):
# Extract the number from the file name
file_name = os.path.basename(file_path)
liver_number = int(file_name.split('_')[1].split('.')[0])
return liver_number
folders = glob(in_dir +'/*')
training_images = sorted(glob(in_dir + '/ImagesTr' + "/*" ))
training_labels = sorted(glob(in_dir + '/LabelsTr' + "/*" ))
training_images = sorted(training_images, key=sort_by_liver_number)[:99]
training_labels = sorted(training_labels, key=sort_by_liver_number)[:99]
testing_images = sorted(training_images, key=sort_by_liver_number)[100:]
testing_labels = sorted(training_labels, key=sort_by_liver_number)[100:]
train_files = [{"vol": image_name, "seg": label_name} for image_name, label_name in zip(training_images, training_labels)]
test_files = [{'vol': image_name, "seg": label_name} for image_name, label_name in zip(testing_images, testing_labels)]
train_transforms = Compose(
[
LoadImaged(keys=["vol", "seg"]),
EnsureChannelFirstd(keys=["vol", "seg"]),
Spacingd(keys=["vol", "seg"], pixdim=pixdim, mode=("bilinear", "nearest")),
Orientationd(keys=["vol", "seg"], axcodes="RAS"),
ScaleIntensityRanged(keys=["vol"], a_min=a_min, a_max=a_max, b_min=0.0, b_max=1.0, clip=True),
CropForegroundd(keys=["vol", "seg"], source_key="vol"),
Resized(keys=["vol", "seg"], spatial_size=spatial_size),
ToTensord(keys=["vol", "seg"]),
]
)
test_transforms = Compose(
[
LoadImaged(keys=["vol", "seg"]),
EnsureChannelFirstd(keys=["vol", "seg"]),
Spacingd(keys=["vol", "seg"], pixdim=pixdim, mode=("bilinear", "nearest")),
Orientationd(keys=["vol", "seg"], axcodes="RAS"),
ScaleIntensityRanged(keys=["vol"], a_min=a_min, a_max=a_max,b_min=0.0, b_max=1.0, clip=True),
CropForegroundd(keys=['vol', 'seg'], source_key='vol', allow_smaller=False),
Resized(keys=["vol", "seg"], spatial_size=spatial_size),
ToTensord(keys=["vol", "seg"]),
]
)
if cache:
train_ds = CacheDataset(data=train_files, transform=train_transforms,cache_rate=1.0)
train_loader = DataLoader(train_ds, batch_size=1)
test_ds = CacheDataset(data=test_files, transform=test_transforms, cache_rate=1.0)
test_loader = DataLoader(test_ds, batch_size=1)
return train_loader, test_loader
else:
train_ds = Dataset(data=train_files, transform=train_transforms)
train_loader = DataLoader(train_ds, batch_size=1)
test_ds = Dataset(data=test_files, transform=test_transforms)
test_loader = DataLoader(test_ds, batch_size=1)
return train_loader, test_loader
train_loader, test_loader = prepare(in_dir='/Users/tylerklimas/Desktop/LiverSegmentation/Task03_liver')