forked from facebookresearch/code-prediction-transformer
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
163 lines (126 loc) · 4.25 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import math
import multiprocessing as mp
import re
from tqdm import tqdm
def line_positions(file_path):
with open(file_path) as f:
while True:
pos = f.tell()
if f.readline():
yield pos
else:
break
def get_number_of_lines(fobj):
nol = sum(1 for _ in fobj)
fobj.seek(0)
return nol
def file_tqdm(f):
return tqdm(f, total=get_number_of_lines(f))
def parallelize(iterable, f, f_args=(), worker_init=None, n_cores=None):
if n_cores == 1:
return _mp_iterate_over(f, iterable, f_args)
if n_cores is None:
n_cores = int(mp.cpu_count())
lst = list(iterable)
chunksize = math.ceil(len(lst) / n_cores)
with mp.Pool(processes=n_cores, initializer=worker_init) as pool:
jobs = [
pool.apply_async(
_mp_iterate_over, (f, lst[i * chunksize : (i + 1) * chunksize], f_args)
)
for i in range(n_cores)
]
multiple_results = [job.get() for job in jobs]
results = flatten(multiple_results)
return results
def _mp_iterate_over(f, lst, f_args):
return [f(x, *f_args) for x in lst]
def flatten(list_of_lists):
return [x for xs in list_of_lists for x in xs]
########################################################################
# generating dataset utils
def get_dfs(ast, only_leaf=False):
dp = []
for node in ast:
if "value" in node:
dp.append(node["value"])
else:
if not only_leaf:
dp.append(node["type"])
return dp
def separate_dps(ast, max_len):
"""
Handles training / evaluation on long ASTs by splitting
them into smaller ASTs of length max_len, with a sliding
window of max_len / 2.
Example: for an AST ast with length 1700, and max_len = 1000,
the output will be:
[[ast[0:1000], 0], [ast[500:1500], 1000], [ast[700:1700], 1500]]
Input:
ast : List[Dictionary]
List of nodes in pre-order traversal.
max_len : int
Output:
aug_asts : List[List[List, int]]
List of (ast, beginning idx of unseen nodes)
"""
half_len = int(max_len / 2)
if len(ast) <= max_len:
return [[ast, 0]]
aug_asts = [[ast[:max_len], 0]]
i = half_len
while i < len(ast) - max_len:
aug_asts.append([ast[i : i + max_len], half_len])
i += half_len
idx = max_len - (len(ast) - (i + half_len))
aug_asts.append([ast[-max_len:], idx])
return aug_asts
def rq6_separate_dps(ast, max_len, overlap = 2):
"""
Handles training / evaluation on long ASTs by splitting
them into smaller ASTs of length max_len, with a sliding
window of max_len / 2.
Example: for an AST ast with length 1700, and max_len = 1000,
the output will be:
[[ast[0:1000], 0], [ast[500:1500], 1000], [ast[700:1700], 1500]]
Input:
ast : List[Dictionary]
List of nodes in pre-order traversal.
max_len : int
Output:
aug_asts : List[List[List, int]]
List of (ast, beginning idx of unseen nodes)
"""
half_len = int(max_len / overlap)
if len(ast) <= max_len:
return [[ast, 0]]
aug_asts = [[ast[:max_len], 0]]
i = half_len
while i < len(ast) - max_len:
aug_asts.append([ast[i : i + max_len], half_len])
i += half_len
idx = max_len - (len(ast) - (i + half_len))
aug_asts.append([ast[-max_len:], idx])
return aug_asts
def get_ancestors(ast):
ancestors = {0: []}
node2parent = {0: 0}
for i, node in enumerate(ast):
if "children" in node:
for child in node["children"]:
node2parent[child] = i
ancestors[i] = [i] + ancestors[node2parent[i]]
return ancestors
def get_terminal_nodes(ast):
terminal_nodes = [i for i, node in enumerate(ast) if "children" not in node]
return terminal_nodes
def tokenize(s):
pattern = re.compile(r"(?<!^)(?=[A-Z])")
tokenized = pattern.sub("_", s).lower().split("_")
return list(filter(None, tokenized))[:5]