forked from facebookresearch/code-prediction-transformer
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
291 lines (250 loc) · 9.53 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
#!/usr/bin/env python3
# Copyright (c) 2019 OpenAI, HugginFace Inc. team. and TaeHwan Jung
# Copyright (c) Facebook, Inc. and its affiliates.
# ----------------------------------------------------------------------------
# MIT LICENSE
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ----------------------------------------------------------------------------
"""
Transformer model is adapted from: https://github.com/graykode/gpt-2-Pytorch
(Commit: 46ae886391a94c6683be438269252c4afd5ba762)
Original Paper and repository here: https://github.com/openai/gpt-2
RNN implementation is adapted from: https://github.com/pytorch/examples/tree/master/word_language_model
"""
import copy
import math
import torch
import torch.nn as nn
from torch.nn.modules.loss import CrossEntropyLoss
def gelu(x):
return (
0.5
* x
* (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
)
class PathLSTM(nn.Module):
def __init__(self, vocab_size, n_embd):
super(PathLSTM, self).__init__()
self.embedding = nn.Embedding(vocab_size, n_embd)
self.LSTM = nn.LSTM(n_embd, n_embd, batch_first=True)
def forward(self, paths):
embed = self.embedding(paths) # bs, max_len, max_path_len, n_embd
batch_size, bag_size, path_len, n_embd = embed.shape
_, (h_n, _) = self.LSTM(embed.view(batch_size * bag_size, path_len, n_embd))
return h_n.permute((1, 0, 2)).view((batch_size, bag_size, -1))
class LayerNorm(nn.Module):
def __init__(self, hidden_size, std_eps=1e-6):
"""Construct a layernorm module in the TF style.
"""
super(LayerNorm, self).__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.bias = nn.Parameter(torch.zeros(hidden_size))
self.std_eps = std_eps
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).std(-1, keepdim=True)
x = (x - u) / (s + self.std_eps)
return self.weight * x + self.bias
class Attention(nn.Module):
def __init__(
self, nx, n_ctx, n_head, scale=False
):
super(Attention, self).__init__()
n_state = nx
# [switch nx => n_state from Block to Attention to keep identical to TF implem]
assert n_state % n_head == 0
self.register_buffer(
"bias", torch.tril(torch.ones(n_ctx, n_ctx)).view(1, 1, n_ctx, n_ctx)
)
self.n_head = n_head
self.split_size = n_state
self.scale = scale
self.c_attn = nn.Linear(nx, n_state * 3)
self.c_proj = nn.Linear(nx, n_state)
def _attn(self, q, k, v):
w = torch.matmul(q, k)
if self.scale:
w = w / math.sqrt(v.size(-1))
nd, ns = w.size(-2), w.size(-1)
b = self.bias[:, :, ns - nd : ns, :ns]
w = w * b - 1e10 * (1 - b)
w = nn.Softmax(dim=-1)(w)
return torch.matmul(w, v)
def merge_heads(self, x):
x = x.permute(0, 2, 1, 3).contiguous()
new_x_shape = x.size()[:-2] + (x.size(-2) * x.size(-1),)
return x.view(*new_x_shape) # in Tensorflow implem: fct merge_states
def split_heads(self, x, k=False):
new_x_shape = x.size()[:-1] + (self.n_head, x.size(-1) // self.n_head)
x = x.view(*new_x_shape) # in Tensorflow implem: fct split_states
if k:
return x.permute(0, 2, 3, 1) # (batch, head, head_features, seq_length)
else:
return x.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
def forward(self, x):
x = self.c_attn(x)
query, key, value = x.split(self.split_size, dim=2)
query = self.split_heads(query)
key = self.split_heads(key, k=True)
value = self.split_heads(value)
# self attention component
a = self._attn(query, key, value)
a = self.merge_heads(a)
a = self.c_proj(a)
return a
class MLP(nn.Module):
def __init__(self, n_state, n_embd):
super(MLP, self).__init__()
self.c_fc = nn.Linear(n_embd, n_state)
self.c_proj = nn.Linear(n_state, n_embd)
self.act = gelu
def forward(self, x):
h = self.act(self.c_fc(x))
h2 = self.c_proj(h)
return h2
class Block(nn.Module):
def __init__(
self,
n_ctx,
n_head,
n_embd,
layer_norm_epsilon,
scale=False,
):
super(Block, self).__init__()
self.ln_1 = LayerNorm(n_embd, std_eps=layer_norm_epsilon)
self.attn = Attention(
n_embd, n_ctx, n_head, scale
)
self.ln_2 = LayerNorm(n_embd, std_eps=layer_norm_epsilon)
self.mlp = MLP(4 * n_embd, n_embd)
def forward(self, x):
a = self.attn(self.ln_1(x))
x = x + a
m = self.mlp(self.ln_2(x))
x = x + m
return x
class GPT2Model(nn.Module):
def __init__(
self,
vocab_size,
n_layer,
n_embd,
n_ctx,
n_head,
layer_norm_epsilon,
root_paths,
):
super(GPT2Model, self).__init__()
self.n_layer = n_layer
self.n_embd = n_embd
self.n_vocab = vocab_size
self.wte = nn.Embedding(vocab_size, n_embd)
if root_paths:
self.path_lstm = PathLSTM(vocab_size, n_embd)
block = Block(
n_ctx,
n_head,
n_embd,
layer_norm_epsilon,
scale=True,
)
self.h = nn.ModuleList([copy.deepcopy(block) for _ in range(n_layer)])
self.ln_f = LayerNorm(n_embd, std_eps=layer_norm_epsilon)
def forward(self, input_ids, paths=None):
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_ids.size(-1))
inputs_embeds = self.wte(input_ids)
path_embeds = self.path_lstm(paths) if paths is not None else 0
hidden_states = inputs_embeds + path_embeds
for block in self.h:
hidden_states = block(hidden_states)
hidden_states = self.ln_f(hidden_states)
output_shape = input_shape + (hidden_states.size(-1),)
return hidden_states.view(*output_shape)
class GPT2LMHead(nn.Module):
def __init__(self, model_embeddings_weights, n_embd):
super(GPT2LMHead, self).__init__()
self.n_embd = n_embd
self.set_embeddings_weights(model_embeddings_weights)
def set_embeddings_weights(self, model_embeddings_weights):
embed_shape = model_embeddings_weights.shape
self.decoder = nn.Linear(embed_shape[1], embed_shape[0], bias=False)
self.decoder.weight = model_embeddings_weights # Tied weights
def forward(self, hidden_state):
lm_logits = self.decoder(hidden_state)
return lm_logits
class TransformerModel(nn.Module):
def __init__(
self,
vocab_size,
loss_fn,
n_layer,
n_embd,
n_ctx,
n_head,
layer_norm_epsilon,
root_paths=False,
):
super(TransformerModel, self).__init__()
self.transformer = GPT2Model(
vocab_size,
n_layer,
n_embd,
n_ctx,
n_head,
layer_norm_epsilon,
root_paths,
)
self.lm_head = GPT2LMHead(self.transformer.wte.weight, n_embd)
self.loss_fn = loss_fn
def reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(
self, x, y, ext=None, paths=None, return_loss=False
):
hidden_states = self.transformer(x, paths)
y_pred = self.lm_head(hidden_states)
if not return_loss:
return y_pred
# ext contains a list of idx of where to take the loss from
# we linearize it first
ids = []
max_len = y.size(-1) # Max matrix width in batch
for i, ext_i in enumerate(ext): # Iterate through all exts
# Following line will append range from ext to max_len
# If ext = 0 --> Append entire line
# If ext = X --> Append from X to end of line
ids += [i * max_len + j for j in range(ext_i, max_len)]
# Only apply loss function on previously collected ids
loss = self.loss_fn(y_pred.view(-1, y_pred.size(-1))[ids], y.view(-1)[ids])
return loss
def from_file(file_path, vocab_size, pad_token, embedding_size = 300, n_layers = 6):
model = TransformerModel(
vocab_size,
CrossEntropyLoss(ignore_index=pad_token),
n_layers,
embedding_size,
1000,
6,
1e-5
)
model.load_state_dict(torch.load(file_path))
return model