-
Notifications
You must be signed in to change notification settings - Fork 62
/
translate_sql_dialect.py
450 lines (398 loc) · 14.4 KB
/
translate_sql_dialect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
import pandas as pd
import asyncio
import json
from utils.dialects import (
sql_to_bigquery,
ddl_to_bigquery,
test_valid_bq,
amend_invalid_sql_concurr,
sql_to_mysql,
ddl_to_mysql,
test_valid_mysql,
sql_to_sqlite,
ddl_to_sqlite,
instructions_to_sqlite,
instructions_to_mysql,
instructions_to_tsql,
test_valid_sqlite,
sql_to_tsql,
ddl_to_tsql,
test_valid_tsql,
get_schema_names,
)
from utils.gen_prompt import to_prompt_schema
from utils.creds import db_creds_all
from tqdm import tqdm
from eval.eval import get_all_minimal_queries
import os
tqdm.pandas()
dataset_file = (
"data/instruct_advanced_postgres.csv" # Postgres dataset file to translate
)
dialect = "mysql" # Supported dialects: "bigquery", "mysql", "sqlite", "tsql"
model = "gpt-4-turbo" # Model to use for translation of invalid SQL
max_concurrent = 5 # Maximum number of concurrent coroutines when querying openai
if "postgres" in dataset_file:
output_file = dataset_file.replace("postgres", dialect)
else:
output_file = dataset_file.replace(".csv", f"_{dialect}.csv")
df = pd.read_csv(dataset_file)
# set validity and error_msg to empty strings
df["valid_list"] = ""
df["err_msg_list"] = ""
# fill na with empty string
df.fillna("", inplace=True)
# create db_type col where if "Snowflake" in file name, db_type = "snowflake", else db_type = "postgres"
if "snowflake" in dataset_file:
df["db_type"] = "snowflake"
else:
df["db_type"] = "postgres"
# if ILIKE in instructions col, and db_type is in ["sqlite", "bigquery", "tsql"], replace ILIKE with LIKE
if "instructions" in df.columns:
df["instructions"] = df["instructions"].apply(
lambda x: (
x.replace("ILIKE", "LIKE")
if "ILIKE" in x and dialect in ["sqlite", "bigquery", "tsql"]
else x
)
)
# translate instructions and full_instructions columns to dialect
if "instructions" in df.columns:
if dialect == "sqlite":
df["instructions"] = df.progress_apply(
lambda x: instructions_to_sqlite(x["instructions"]), axis=1
)
elif dialect == "tsql":
df["instructions"] = df.progress_apply(
lambda x: instructions_to_tsql(x["instructions"]), axis=1
)
elif dialect == "mysql":
df["instructions"] = df.progress_apply(
lambda x: instructions_to_mysql(x["instructions"]), axis=1
)
else:
print(
f"Instructions translation not yet supported for {dialect}. Please add an instructions_to_{dialect} function in utils/dialects.py"
)
if "full_instructions" in df.columns:
if dialect == "sqlite":
df["full_instructions"] = df.progress_apply(
lambda x: instructions_to_sqlite(x["full_instructions"]), axis=1
)
elif dialect == "tsql":
df["full_instructions"] = df.progress_apply(
lambda x: instructions_to_tsql(x["full_instructions"]), axis=1
)
else:
print(
f"Instructions translation not yet supported for {dialect}. Please add an instructions_to_{dialect} function in utils/dialects.py"
)
# if db_name is empty, use "dbname"
df["db_name"] = df.apply(
lambda x: (
"dbname"
if (pd.isna(x.get("db_name")) and x.get("db_name") != "")
else (x["db_name"])
),
axis=1,
)
# get full table_metadata_string for all rows
def get_md_string(db_name):
"""
Get the table metadata string from the metadata dictionary.
"""
from defog_data.metadata import dbs
md = dbs[db_name]["table_metadata"]
table_metadata_string = to_prompt_schema(md)
# add CREATE SCHEMA statements if schema names are present
schema_names = get_schema_names(table_metadata_string)
if schema_names:
for schema_name in schema_names:
table_metadata_string = (
f"CREATE SCHEMA IF NOT EXISTS {schema_name};\n" + table_metadata_string
)
return table_metadata_string
df["table_metadata_string"] = df.progress_apply(
lambda x: get_md_string(x["db_name"]), axis=1
)
# remove `schema_name.` from instructions from all rows if dialect is in ["sqlite", "bigquery", "mysql"]
def remove_schema_instructions(table_metadata_string, instructions):
schema_names = get_schema_names(table_metadata_string)
for schema_name in schema_names:
instructions = instructions.replace(f"{schema_name}.", "")
return instructions
if "instructions" in df.columns:
df["instructions"] = df.progress_apply(
lambda x: (
remove_schema_instructions(x["table_metadata_string"], x["instructions"])
if dialect in ["sqlite", "bigquery", "mysql"]
else x["instructions"]
),
axis=1,
)
# get all minimal queries for all rows
df["query_list"] = df.progress_apply(
lambda x: get_all_minimal_queries(x["query"]), axis=1
)
############################ Translation ############################
# translate query col to dialect with sqlglot
print(f"Translating all SQL to {dialect} with sqlglot...")
if dialect == "bigquery":
df["sql_tuple_list"] = df.progress_apply(
lambda x: [
sql_to_bigquery(
query,
x["db_type"],
x["table_metadata_string"],
x["db_name"],
str(x.name),
)
for query in x["query_list"]
],
axis=1,
)
elif dialect == "mysql":
df["sql_tuple_list"] = df.progress_apply(
lambda x: [
sql_to_mysql(
query,
x["db_type"],
x["table_metadata_string"],
)
for query in x["query_list"]
],
axis=1,
)
elif dialect == "sqlite":
df["sql_tuple_list"] = df.progress_apply(
lambda x: [
sql_to_sqlite(
query,
x["db_type"],
x["table_metadata_string"],
)
for query in x["query_list"]
],
axis=1,
)
elif dialect == "tsql":
df["sql_tuple_list"] = df.progress_apply(
lambda x: [
sql_to_tsql(
query,
x["db_type"],
)
for query in x["query_list"]
],
axis=1,
)
# create sql_dialect_list (list of first items in tuple)
df[f"sql_{dialect}_list"] = df["sql_tuple_list"].apply(
lambda x: [item[0] for item in x]
)
df.drop(columns=["sql_tuple_list"], inplace=True)
# translate ddl col to dialect (only for use in amending invalid SQL)
print(f"Translating all DDL to {dialect}...")
if dialect == "bigquery":
df[f"table_metadata_string_tuple"] = df.progress_apply(
lambda x: ddl_to_bigquery(
x["table_metadata_string"],
x["db_type"],
x["db_name"],
str(x.name),
),
axis=1,
)
elif dialect == "mysql":
df[f"table_metadata_string_tuple"] = df.progress_apply(
lambda x: ddl_to_mysql(
x["table_metadata_string"],
x["db_type"],
x["db_name"],
str(x.name),
),
axis=1,
)
elif dialect == "sqlite":
df[f"table_metadata_string_tuple"] = df.progress_apply(
lambda x: ddl_to_sqlite(
x["table_metadata_string"],
x["db_type"],
x["db_name"],
str(x.name),
),
axis=1,
)
elif dialect == "tsql":
df[f"table_metadata_string_tuple"] = df.progress_apply(
lambda x: ddl_to_tsql(
x["table_metadata_string"],
x["db_type"],
x["db_name"],
str(x.name),
),
axis=1,
)
df[f"table_metadata_{dialect}"], _ = zip(*df["table_metadata_string_tuple"])
df.drop(columns=["table_metadata_string_tuple"], inplace=True)
###################### Validity Check on Test DBs ##########################
# test the validity of the queries on the defog-data DBs sequentially
print(f"Checking validity of all translated SQL on existing DBs in {dialect}...")
df["result_tuple_list"] = ""
sql_col = f"sql_{dialect}_list"
for i, row in tqdm(df.iterrows(), total=len(df)):
sql_list = row[sql_col]
if dialect == "bigquery":
result_tuple_list = test_valid_bq(
db_creds_all["bigquery"], sql_list, row.db_name
)
elif dialect == "mysql":
result_tuple_list = test_valid_mysql(
db_creds_all["mysql"], sql_list, row.db_name
)
elif dialect == "sqlite":
result_tuple_list = test_valid_sqlite(
db_creds_all["sqlite"], sql_list, row.db_name
)
elif dialect == "tsql":
result_tuple_list = test_valid_tsql(db_creds_all["tsql"], sql_list, row.db_name)
else:
raise ValueError("Dialect not supported")
df.at[i, "result_tuple_list"] = result_tuple_list
df[f"valid_list"] = df["result_tuple_list"].apply(lambda x: [item[0] for item in x])
df[f"err_msg_list"] = df["result_tuple_list"].apply(lambda x: [item[1] for item in x])
df.drop(columns=["result_tuple_list"], inplace=True)
df.reset_index(inplace=True)
# get rows with at least one invalid SQL
df_invalid = df[df["valid_list"].apply(lambda x: False in x)].copy()
print("No. of invalid rows: ", len(df_invalid))
############################ Correction ############################
# use llm to correct invalid SQL if any
if df_invalid.shape[0] > 0:
print(f"Correcting invalid SQL using {model}...")
async def main():
results = await amend_invalid_sql_concurr(
df_invalid, model, max_concurrent, dialect
)
df_invalid["corrected_sql_list"] = results
asyncio.run(main())
# extract corrected SQL and add to DataFrame
df_invalid[f"sql_{dialect}_corrected_list"] = df_invalid[
"corrected_sql_list"
].apply(lambda x: [item.get("sql") for item in x])
df_invalid.drop(columns=["corrected_sql_list"], inplace=True)
# check validity of corrected SQL
print(f"Checking validity of corrected SQL in {dialect}...")
sql_col = f"sql_{dialect}_corrected_list"
df_invalid["result_tuple_list"] = ""
for i, row in tqdm(df_invalid.iterrows(), total=len(df_invalid)):
sql_list = row[sql_col]
if dialect == "bigquery":
result_tuple_list = test_valid_bq(
db_creds_all["bigquery"], sql_list, row.db_name
)
elif dialect == "mysql":
result_tuple_list = test_valid_mysql(
db_creds_all["mysql"], sql_list, row.db_name
)
elif dialect == "sqlite":
result_tuple_list = test_valid_sqlite(
db_creds_all["sqlite"], sql_list, row.db_name
)
elif dialect == "tsql":
result_tuple_list = test_valid_tsql(
db_creds_all["tsql"], sql_list, row.db_name
)
else:
raise ValueError("Dialect not supported")
df_invalid.at[i, "result_tuple_list"] = result_tuple_list
df_invalid[f"valid_list"] = df_invalid["result_tuple_list"].apply(
lambda x: [item[0] for item in x]
)
df_invalid[f"err_msg_list"] = df_invalid["result_tuple_list"].apply(
lambda x: [item[1] for item in x]
)
df_invalid.drop(columns=["result_tuple_list"], inplace=True)
# get corrected valid rows where all SQLs are valid
df_corrected_valid = df_invalid[
df_invalid["valid_list"].apply(lambda x: False not in x)
].copy()
print("No. of corrected valid rows: ", len(df_corrected_valid))
# replace sqlglot translated columns with LLM corrected columns
df_corrected_valid.drop(columns=[f"sql_{dialect}_list"], inplace=True)
df_corrected_valid.rename(
columns={
f"sql_{dialect}_corrected_list": f"sql_{dialect}_list",
},
inplace=True,
)
# merge corrected valid rows with original DataFrame
merged_df = pd.concat([df, df_corrected_valid], ignore_index=False, axis=0)
# deduplicate indices in merged_df and keep only corrected rows
merged_df = merged_df.loc[~merged_df.index.duplicated(keep="last")]
merged_df = merged_df.copy()
merged_df.sort_index(inplace=True)
else:
merged_df = df.copy()
############################ Post-Processing ############################
# count no. of invalid rows where there is at least one invalid SQL
n_invalid = len(merged_df[merged_df["valid_list"].apply(lambda x: False in x)])
print("No. of invalid rows remaining: ", n_invalid)
if n_invalid > 0:
print("Please manually correct the invalid SQL(s) in the output file.")
# prefix all invalid sql with "INVALID: err_msg"
merged_df[f"sql_{dialect}_list"] = merged_df.apply(
lambda row: [
(
f"<INVALID ERR MSG>: {row['err_msg_list'][index]}-----------------<INVALID TRANSLATION>: {item}-----------------<ORIG POSTGRES>: {row['query_list'][index]}-----------------"
if row["valid_list"][index] == False
else item
)
for index, item in enumerate(row[f"sql_{dialect}_list"])
],
axis=1,
)
# join all SQLs in the list to a single string and add "; to the last SQL
merged_df[f"sql_{dialect}_list"] = merged_df[f"sql_{dialect}_list"].apply(
lambda x: ";".join(x) + ";"
)
merged_df.fillna("", inplace=True)
# change all db_type to dialect
merged_df["db_type"] = dialect
# drop original query col and table_metadata_string col
merged_df.drop(columns=["query", "query_list", "table_metadata_string"], inplace=True)
# rename sql_{dialect} to sql
merged_df.rename(
columns={
f"sql_{dialect}_list": "query",
},
inplace=True,
)
# drop cols
drop_columns = [
"valid_list",
"err_msg_list",
f"table_metadata_{dialect}",
"index",
]
merged_df.drop(columns=drop_columns, inplace=True)
# reorder cols
first_cols = [
"db_name",
"db_type",
"query_category",
"query",
"question",
]
cols = list(merged_df.columns)
cols = first_cols + [col for col in cols if col not in first_cols]
merged_df = merged_df[cols]
# save to csv
merged_df.to_csv(output_file, index=False)
print(f"Saved to {output_file}")
print(
"""\n\nNote that translations may not be 100% accurate and may require manual correction, especially for date-related syntax such as the following:
date arithmetic calculations, date interval functions, date truncations, date part extractions, current date/time functions
Do also check that all SQL syntax in instructions are correctly translated.
Instruction translation in `instructions_to_<dialect>` of utils/dialects.py is not performed by an LLM and currently only handle specific cases."""
)