-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathprepare_semeval_datasets.py
294 lines (234 loc) · 10.7 KB
/
prepare_semeval_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import os
import argparse
import xml.etree.ElementTree as ET
import random
import math
from collections import Counter
from utils import semeval2014term_to_aspectsentiment_hr
from copy import copy, deepcopy
parser = argparse.ArgumentParser(description='Generate finetuning corpus for restaurants.')
parser.add_argument('--noconfl',
action='store_true',
default=False,
help='Remove conflicting sentiments from labels')
parser.add_argument('--istrain',
action='store_true',
default=False,
help='If is a training set we split of 10% and output train_full, train_split, dev. Default is testset creating no split')
parser.add_argument("--files",
type=str,
nargs='+',
action="store",
help="File that contains the data used for training. Multiple paths will mix the datasets.")
parser.add_argument("--output_dir",
type=str,
action="store",
default="data/transformed/untitled",
help="output dir of the dataset(s)")
parser.add_argument("--upsample",
type=str,
action="store",
default=None,
help="please add a string with 3 numbers like '0.5 0.3 0.2' representing relative numbers of 'POS NEG NEU' adding to 1"
" which represents target distribution - only valid in non-confl case")
parser.add_argument("--seed",
type=int,
action="store",
default=41,
help="random seed, effects on upsampling and validationset")
args = parser.parse_args()
# 1. Load The Dataset
# 2. Print Statistics of Labels
# 3. Create Bert-Pair Style Format
# 4. Save Train, Validation and so on
def split_shuffle_array(ratio, array, rseed):
# split_ratio_restaurant = .076 # for 150 sentence in conflicting case
# split_ratio_laptops = .101 # for 150 sentences in conflicting case
random.Random(rseed).shuffle(array)
m = math.floor(ratio * len(array))
return array[0:m], array[m::]
def create_sentence_pairs(sents, aspect_term_sentiments):
# create sentence_pairs
all_sentiments = []
sentence_pairs = []
labels = []
for ix, ats in enumerate(aspect_term_sentiments):
s = sents[ix]
for k, v in ats:
all_sentiments.append(v)
sentence_pairs.append((s, k))
labels.append(v)
counts = Counter(all_sentiments)
return sentence_pairs, labels, counts
def print_dataset_stats(name, sents, sent_pairs, counts):
print('Dataset:', name)
print('#Sentences with minimum 1 label', len(sents))
print('Label Counts', counts.most_common())
print('#SentencePairs', len(sent_pairs))
print('POS%', counts['POS'] / len(sent_pairs))
print('NEG%', counts['NEG'] / len(sent_pairs))
print('NEU%', counts['NEU'] / len(sent_pairs))
print('POS/NEG', counts['POS'] / counts['NEG'])
print('POS/NEU', counts['POS'] / counts['NEU'])
print('NEG/NEU', counts['NEG'] / counts['NEU'])
print()
def upsample_data(sentence_pairs, labels, target_ratios={'POS': 0.53, 'NEG': 0.21, 'NEU': 0.26}):
# one question: should we upsample sentencepairs, where the sentence only occurs once?!
print('Upsampling data ...')
# print(sentence_pairs, labels) # is list of pairs -> decide which pair to upsample ...
# 0. compute indeex subsets for every example
# 1. compute how many samples to sample ->
ix_subsets = {
'POS': [],
'NEG': [],
'NEU': []
}
ratios_subsets = {
'POS': 0,
'NEG': 0,
'NEU': 0
}
examples_to_add = {
'POS': 0,
'NEG': 0,
'NEU': 0
}
n = float(len(labels))
for ix, l in enumerate(labels):
ix_subsets[l].append(ix)
ratios_subsets[l] += (1.0 / n)
t_keys = target_ratios.keys()
tmp = [math.floor(target_ratios[k] * n) - len(ix_subsets[k]) for k in t_keys]
class_nothing_to_add = list(t_keys)[tmp.index(min(tmp))]
print(t_keys)
print(ratios_subsets)
print(tmp)
print(class_nothing_to_add)
# print(ix_subsets)
m = len(ix_subsets[class_nothing_to_add]) / target_ratios[class_nothing_to_add]
total_to_add = m - n
print(n, math.floor(m))
examples_to_add = {k: math.floor(target_ratios[k] * m - len(ix_subsets[k])) for k in t_keys}
print(examples_to_add) # so we need to add more neutral examples and more positiev ones
# downsampling would be set 0 the maximum amount of negative ones
# now select all the indices, with replacement because it can be more than double
new_samples = []
for k in t_keys:
new_samples.extend(random.Random(args.seed).choices(ix_subsets[k], k=examples_to_add[k]))
print(len(new_samples))
# now add all new samples to the dataset and shuffle it
new_sentence_pairs = copy(sentence_pairs)
new_labels = labels.copy()
for ix in new_samples:
new_sentence_pairs.append(copy(sentence_pairs[ix]))
new_labels.append(labels[ix])
random.Random(args.seed).shuffle(new_sentence_pairs)
random.Random(args.seed).shuffle(new_labels)
print(len(set(new_sentence_pairs)))
print(len(set(sentence_pairs)))
return new_sentence_pairs, new_labels
def export_dataset_to_xml(fn, sentence_pairs, labels):
# export in format semeval 2014, incomplete though! just for loading with existing dataloaders for ATSC
sentences_el = ET.Element('sentences')
sentimap_reverse = {
'POS': 'positive',
'NEU': 'neutral',
'NEG': 'negative',
'CONF': 'conflict'
}
for ix, (sentence, aspectterm) in enumerate(sentence_pairs):
# print(sentence)
sentiment = labels[ix]
sentence_el = ET.SubElement(sentences_el, 'sentence')
sentence_el.set('id', str(ix))
text = ET.SubElement(sentence_el, 'text')
text.text = str(sentence).strip()
aspect_terms_el = ET.SubElement(sentence_el, 'aspectTerms')
aspect_term_el = ET.SubElement(aspect_terms_el, 'aspectTerm')
aspect_term_el.set('term', aspectterm)
aspect_term_el.set('polarity', sentimap_reverse[sentiment])
aspect_term_el.set('from', str('0'))
aspect_term_el.set('to', str('0'))
def indent(elem, level=0):
i = "\n" + level * " "
j = "\n" + (level - 1) * " "
if len(elem):
if not elem.text or not elem.text.strip():
elem.text = i + " "
if not elem.tail or not elem.tail.strip():
elem.tail = i
for subelem in elem:
indent(subelem, level + 1)
if not elem.tail or not elem.tail.strip():
elem.tail = j
else:
if level and (not elem.tail or not elem.tail.strip()):
elem.tail = j
return elem
indent(sentences_el)
# mydata = ET.dump(sentences_el)
mydata = ET.tostring(sentences_el)
with open(fn, "wb") as f:
# f.write('<?xml version="1.0" encoding="UTF-8" standalone="yes"?>')
f.write(mydata)
f.close()
def save_dataset_to_tsv(fn, data):
pass
sentence_pairs_train_mixed = []
sentence_pairs_trainsplit_mixed = []
sentence_pairs_dev_mixed = []
sentence_pairs_test_mixed = []
labels_train_mixed = []
labels_trainsplit_mixed = []
labels_dev_mixed = []
labels_test_mixed = []
for fn in args.files:
print(args.output_dir)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
print(fn)
sents_train, ats_train, idx2labels = semeval2014term_to_aspectsentiment_hr(fn,
remove_conflicting=args.noconfl)
sentence_pairs_train, labels_train, counts_train = create_sentence_pairs(sents_train, ats_train)
if args.istrain:
sents_dev, sents_trainsplit = split_shuffle_array(.1, sents_train, 41)
ats_dev, ats_trainsplit = split_shuffle_array(.1, ats_train, 41)
sentence_pairs_dev, labels_dev, counts_dev = create_sentence_pairs(sents_dev, ats_dev)
sentence_pairs_trainsplit, labels_trainsplit, counts_trainsplit = create_sentence_pairs(sents_trainsplit,
ats_trainsplit)
print_dataset_stats('Train', sents_train, sentence_pairs_train, counts_train)
print_dataset_stats('Dev', sents_dev, sentence_pairs_dev, counts_dev)
print_dataset_stats('TrainSplit', sents_trainsplit, sentence_pairs_trainsplit, counts_trainsplit)
sentence_pairs_trainsplit_mixed += sentence_pairs_trainsplit
sentence_pairs_train_mixed += sentence_pairs_train
sentence_pairs_dev_mixed += sentence_pairs_dev
labels_trainsplit_mixed += labels_trainsplit
labels_train_mixed += labels_train
labels_dev_mixed += labels_dev
if len(args.files) == 1:
if args.upsample:
distro_arr = args.upsample.split(' ')
pos = float(distro_arr[0])
neg = float(distro_arr[1])
neu = float(distro_arr[2])
assert pos + neg + neu == 1.0, 'upsampling target distribution does not sum to 1'
target_distro = {'POS': pos, 'NEG': neg, 'NEU': neu}
print('Target Sampling Distribution for Training Set:', target_distro)
sentence_pairs_train, labels_train = upsample_data(sentence_pairs_train, labels_train, target_ratios=target_distro)
export_dataset_to_xml(args.output_dir + '/train.xml', sentence_pairs_train, labels_train)
export_dataset_to_xml(args.output_dir + '/dev.xml', sentence_pairs_dev, labels_dev)
export_dataset_to_xml(args.output_dir + '/train_split.xml', sentence_pairs_trainsplit, labels_trainsplit)
else:
sentence_pairs_test_mixed += sentence_pairs_train
labels_test_mixed += labels_train
print_dataset_stats('Test', sents_train, sentence_pairs_train, counts_train)
if len(args.files) == 1:
export_dataset_to_xml(args.output_dir + '/test.xml', sentence_pairs_train, labels_train)
if len(args.files) > 1:
if args.istrain:
export_dataset_to_xml(args.output_dir + '/train.xml', sentence_pairs_train_mixed, labels_train_mixed)
export_dataset_to_xml(args.output_dir + '/dev.xml', sentence_pairs_dev_mixed, labels_dev_mixed)
export_dataset_to_xml(args.output_dir + '/train_split.xml', sentence_pairs_trainsplit_mixed,
labels_trainsplit_mixed)
else:
export_dataset_to_xml(args.output_dir + '/test.xml', sentence_pairs_test_mixed, labels_test_mixed)