diff --git a/docs/source/install.md b/docs/source/install.md index a79c725..c1b317e 100644 --- a/docs/source/install.md +++ b/docs/source/install.md @@ -18,6 +18,7 @@ conda create -n rid-drop python=3.9 libtensorflow_cc=2.6.2=*cuda110* tensorflow= ```bash conda activate rid-drop conda install mdtraj nccl -c conda-forge +conda install cudatoolkit-dev -c conda-forge pip install cmake cython pip install matplotlib parmed scikit-learn dpdata ``` diff --git a/docs/source/install_dp.md b/docs/source/install_dp.md index d73bc91..eb581ee 100644 --- a/docs/source/install_dp.md +++ b/docs/source/install_dp.md @@ -12,10 +12,14 @@ The `enviroment` of rid-kit software is a bit complex, it uses `dflow` to manage ### Install tensorflow's C++ interface and other necessary packages We recommend using conda to manage the python enviroment. Use the command -``` +```bash conda create -n rid-dp python=3.9 libtensorflow_cc=2.6.2=*cuda110* tensorflow=2.6.2=*cuda110* nccl mdtraj numpy scikit-learn cmake dpdata cython -c conda-forge ``` to get the compiled libtensorflow_cc and other necessary packages. +Install the cudatoolkit which manage the nvcc and other commands. +```bash +conda install cudatoolkit-dev -c conda-forge +``` After installation, activate the enviroment and set library path ```bash conda activate rid-dp