diff --git a/source/tests/pt/model/test_property_fitting.py b/source/tests/pt/model/test_property_fitting.py index df11f5b2f3..59a5b1b172 100644 --- a/source/tests/pt/model/test_property_fitting.py +++ b/source/tests/pt/model/test_property_fitting.py @@ -45,7 +45,6 @@ def setUp(self): self.rng = np.random.default_rng() self.nf, self.nloc, _ = self.nlist.shape self.dd0 = DescrptSeA(self.rcut, self.rcut_smth, self.sel).to(env.DEVICE) - self.scale = self.rng.uniform(0, 1, self.nt).tolist() def test_consistency( self, @@ -59,16 +58,15 @@ def test_consistency( self.atype_ext[:, : self.nloc], dtype=int, device=env.DEVICE ) - for mixed_types, nfp, nap, fit_diag, scale, bias_atom_p in itertools.product( - [True, False], + for nfp, nap, bias_atom_p, intensive, bias_method in itertools.product( [0, 3], [0, 4], - [True, False], - [None, self.scale], [ np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]), np.array([[11, 12, 13, 4, 15], [16, 17, 18, 9, 20]]), ], + [True, False], + ["normal", "no_bias"], ): ft0 = PropertyFittingNet( self.nt, @@ -76,10 +74,10 @@ def test_consistency( task_dim=5, numb_fparam=nfp, numb_aparam=nap, - mixed_types=mixed_types, - fit_diag=fit_diag, - scale=scale, + mixed_types=self.dd0.mixed_types(), bias_atom_p=bias_atom_p, + intensive=intensive, + bias_method=bias_method, ).to(env.DEVICE) ft1 = DPProperFittingNet.deserialize(ft0.serialize()) @@ -133,11 +131,11 @@ def test_consistency( def test_jit( self, ): - for mixed_types, nfp, nap, fit_diag in itertools.product( - [True, False], + for nfp, nap, intensive, bias_method in itertools.product( [0, 3], [0, 4], [True, False], + ["normal", "no_bias"], ): ft0 = PropertyFittingNet( self.nt, @@ -145,13 +143,92 @@ def test_jit( task_dim=5, numb_fparam=nfp, numb_aparam=nap, - mixed_types=mixed_types, - fit_diag=fit_diag, + mixed_types=self.dd0.mixed_types(), + intensive=intensive, + bias_method=bias_method, ).to(env.DEVICE) torch.jit.script(ft0) -class TestInvariance(unittest.TestCase): +class TestInvarianceOutCell(unittest.TestCase): + def setUp(self) -> None: + self.natoms = 5 + self.rcut = 4 + self.rcut_smth = 0.5 + self.sel = [46, 92, 4] + self.nf = 1 + self.nt = 3 + self.rng = np.random.default_rng() + self.coord = torch.tensor( + [ + [1.1042, 0.6852, 1.3582], + [1.8812, 1.6277, 0.3153], + [1.5655, 1.0383, 0.4152], + [0.9594, 1.2298, 0.8124], + [0.7905, 0.5014, 0.6654], + ], + dtype=dtype, + device=env.DEVICE, + ) + self.shift = torch.tensor([1000, 1000, 1000], dtype=dtype, device=env.DEVICE) + self.atype = torch.tensor([0, 0, 0, 1, 1], dtype=torch.int32, device=env.DEVICE) + self.dd0 = DescrptSeA(self.rcut, self.rcut_smth, self.sel).to(env.DEVICE) + self.cell = torch.tensor( + [ + [0.7333, 0.9166, 0.6533], + [0.1151, 0.9078, 0.2058], + [0.6907, 0.0370, 0.4863], + ], + dtype=dtype, + device=env.DEVICE, + ) + self.cell = (self.cell + self.cell.T) + 5.0 * torch.eye(3, device=env.DEVICE) + + def test_trans(self): + atype = self.atype.reshape(1, 5) + coord_s = torch.matmul( + torch.remainder( + torch.matmul(self.coord + self.shift, torch.linalg.inv(self.cell)), 1.0 + ), + self.cell, + ) + ft0 = PropertyFittingNet( + self.nt, + self.dd0.dim_out, + task_dim=11, + numb_fparam=0, + numb_aparam=0, + mixed_types=self.dd0.mixed_types(), + ).to(env.DEVICE) + res = [] + for xyz in [self.coord, coord_s]: + ( + extended_coord, + extended_atype, + _, + nlist, + ) = extend_input_and_build_neighbor_list( + xyz, + atype, + self.rcut, + self.sel, + self.dd0.mixed_types(), + box=self.cell, + ) + + rd0, gr0, _, _, _ = self.dd0( + extended_coord, + extended_atype, + nlist, + ) + + ret0 = ft0(rd0, atype, gr0, fparam=0, aparam=0) + res.append(ret0["property"]) + + np.testing.assert_allclose(to_numpy_array(res[0]), to_numpy_array(res[1])) + + +class TestInvarianceRandomShift(unittest.TestCase): def setUp(self) -> None: self.natoms = 5 self.rcut = 4 @@ -166,19 +243,19 @@ def setUp(self) -> None: self.dd0 = DescrptSeA(self.rcut, self.rcut_smth, self.sel).to(env.DEVICE) self.cell = torch.rand([3, 3], dtype=dtype, device=env.DEVICE) self.cell = (self.cell + self.cell.T) + 5.0 * torch.eye(3, device=env.DEVICE) - self.scale = self.rng.uniform(0, 1, self.nt).tolist() def test_rot(self): atype = self.atype.reshape(1, 5) rmat = torch.tensor(special_ortho_group.rvs(3), dtype=dtype, device=env.DEVICE) coord_rot = torch.matmul(self.coord, rmat) + # use larger cell to rotate only coord and shift to the center of cell + cell_rot = 10.0 * torch.eye(3, dtype=dtype, device=env.DEVICE) - for mixed_types, nfp, nap, fit_diag, scale in itertools.product( - [True, False], + for nfp, nap, intensive, bias_method in itertools.product( [0, 3], [0, 4], [True, False], - [None, self.scale], + ["normal", "no_bias"], ): ft0 = PropertyFittingNet( self.nt, @@ -186,9 +263,9 @@ def test_rot(self): task_dim=9, numb_fparam=nfp, numb_aparam=nap, - mixed_types=True, - fit_diag=fit_diag, - scale=scale, + mixed_types=self.dd0.mixed_types(), + intensive=intensive, + bias_method=bias_method, ).to(env.DEVICE) if nfp > 0: ifp = torch.tensor( @@ -213,7 +290,12 @@ def test_rot(self): _, nlist, ) = extend_input_and_build_neighbor_list( - xyz + self.shift, atype, self.rcut, self.sel, mixed_types + xyz + self.shift, + atype, + self.rcut, + self.sel, + self.dd0.mixed_types(), + box=cell_rot, ) rd0, gr0, _, _, _ = self.dd0( @@ -222,7 +304,7 @@ def test_rot(self): nlist, ) - ret0 = ft0(rd0, extended_atype, gr0, fparam=ifp, aparam=iap) + ret0 = ft0(rd0, atype, gr0, fparam=ifp, aparam=iap) res.append(ret0["property"]) np.testing.assert_allclose( to_numpy_array(res[1]), @@ -231,42 +313,44 @@ def test_rot(self): def test_permu(self): coord = torch.matmul(self.coord, self.cell) - for fit_diag, scale in itertools.product([True, False], [None, self.scale]): - ft0 = PropertyFittingNet( - self.nt, - self.dd0.dim_out, - task_dim=8, - numb_fparam=0, - numb_aparam=0, - mixed_types=True, - fit_diag=fit_diag, - scale=scale, - ).to(env.DEVICE) - res = [] - for idx_perm in [[0, 1, 2, 3, 4], [1, 0, 4, 3, 2]]: - atype = self.atype[idx_perm].reshape(1, 5) - ( - extended_coord, - extended_atype, - _, - nlist, - ) = extend_input_and_build_neighbor_list( - coord[idx_perm], atype, self.rcut, self.sel, False - ) + ft0 = PropertyFittingNet( + self.nt, + self.dd0.dim_out, + task_dim=8, + numb_fparam=0, + numb_aparam=0, + mixed_types=self.dd0.mixed_types(), + ).to(env.DEVICE) + res = [] + for idx_perm in [[0, 1, 2, 3, 4], [1, 0, 4, 3, 2]]: + atype = self.atype[idx_perm].reshape(1, 5) + ( + extended_coord, + extended_atype, + _, + nlist, + ) = extend_input_and_build_neighbor_list( + coord[idx_perm], + atype, + self.rcut, + self.sel, + self.dd0.mixed_types(), + box=self.cell, + ) - rd0, gr0, _, _, _ = self.dd0( - extended_coord, - extended_atype, - nlist, - ) + rd0, gr0, _, _, _ = self.dd0( + extended_coord, + extended_atype, + nlist, + ) - ret0 = ft0(rd0, extended_atype, gr0, fparam=None, aparam=None) - res.append(ret0["property"]) + ret0 = ft0(rd0, atype, gr0, fparam=None, aparam=None) + res.append(ret0["property"]) - np.testing.assert_allclose( - to_numpy_array(res[0][:, idx_perm]), - to_numpy_array(res[1]), - ) + np.testing.assert_allclose( + to_numpy_array(res[0][:, idx_perm]), + to_numpy_array(res[1]), + ) def test_trans(self): atype = self.atype.reshape(1, 5) @@ -276,38 +360,40 @@ def test_trans(self): ), self.cell, ) - for fit_diag, scale in itertools.product([True, False], [None, self.scale]): - ft0 = PropertyFittingNet( - self.nt, - self.dd0.dim_out, - task_dim=11, - numb_fparam=0, - numb_aparam=0, - mixed_types=True, - fit_diag=fit_diag, - scale=scale, - ).to(env.DEVICE) - res = [] - for xyz in [self.coord, coord_s]: - ( - extended_coord, - extended_atype, - _, - nlist, - ) = extend_input_and_build_neighbor_list( - xyz, atype, self.rcut, self.sel, False - ) + ft0 = PropertyFittingNet( + self.nt, + self.dd0.dim_out, + task_dim=11, + numb_fparam=0, + numb_aparam=0, + mixed_types=self.dd0.mixed_types(), + ).to(env.DEVICE) + res = [] + for xyz in [self.coord, coord_s]: + ( + extended_coord, + extended_atype, + _, + nlist, + ) = extend_input_and_build_neighbor_list( + xyz, + atype, + self.rcut, + self.sel, + self.dd0.mixed_types(), + box=self.cell, + ) - rd0, gr0, _, _, _ = self.dd0( - extended_coord, - extended_atype, - nlist, - ) + rd0, gr0, _, _, _ = self.dd0( + extended_coord, + extended_atype, + nlist, + ) - ret0 = ft0(rd0, extended_atype, gr0, fparam=0, aparam=0) - res.append(ret0["property"]) + ret0 = ft0(rd0, atype, gr0, fparam=0, aparam=0) + res.append(ret0["property"]) - np.testing.assert_allclose(to_numpy_array(res[0]), to_numpy_array(res[1])) + np.testing.assert_allclose(to_numpy_array(res[0]), to_numpy_array(res[1])) class TestPropertyModel(unittest.TestCase): @@ -329,7 +415,7 @@ def setUp(self): task_dim=3, numb_fparam=0, numb_aparam=0, - mixed_types=True, + mixed_types=self.dd0.mixed_types(), intensive=True, ).to(env.DEVICE) self.type_mapping = ["O", "H", "B"]