diff --git a/deepmd_utils/model_format/__init__.py b/deepmd_utils/model_format/__init__.py new file mode 100644 index 0000000000..4b33aa0151 --- /dev/null +++ b/deepmd_utils/model_format/__init__.py @@ -0,0 +1,18 @@ +# SPDX-License-Identifier: LGPL-3.0-or-later +from .network import ( + EmbeddingNet, + NativeLayer, + NativeNet, + load_dp_model, + save_dp_model, + traverse_model_dict, +) + +__all__ = [ + "EmbeddingNet", + "NativeLayer", + "NativeNet", + "load_dp_model", + "save_dp_model", + "traverse_model_dict", +] diff --git a/deepmd_utils/model_format.py b/deepmd_utils/model_format/network.py similarity index 81% rename from deepmd_utils/model_format.py rename to deepmd_utils/model_format/network.py index 131be93121..04aaa75534 100644 --- a/deepmd_utils/model_format.py +++ b/deepmd_utils/model_format/network.py @@ -275,10 +275,10 @@ class NativeNet(NativeOP): The layers of the network. """ - def __init__(self, layers: Optional[List[NativeLayer]] = None) -> None: + def __init__(self, layers: Optional[List[dict]] = None) -> None: if layers is None: layers = [] - self.layers = layers + self.layers = [NativeLayer.deserialize(layer) for layer in layers] def serialize(self) -> dict: """Serialize the network to a dict. @@ -299,7 +299,7 @@ def deserialize(cls, data: dict) -> "NativeNet": data : dict The dict to deserialize from. """ - return cls([NativeLayer.deserialize(layer) for layer in data["layers"]]) + return cls(data["layers"]) def __getitem__(self, key): assert isinstance(key, int) @@ -329,3 +329,63 @@ def call(self, x: np.ndarray) -> np.ndarray: for layer in self.layers: x = layer.call(x) return x + + +class EmbeddingNet(NativeNet): + def __init__( + self, + in_dim, + neuron: List[int] = [24, 48, 96], + activation_function: str = "tanh", + resnet_dt: bool = False, + ): + layers = [] + i_in = in_dim + rng = np.random.default_rng() + for idx, ii in enumerate(neuron): + i_ot = ii + layers.append( + NativeLayer( + rng.normal(size=(i_in, i_ot)), + b=rng.normal(size=(ii)), + idt=rng.normal(size=(ii)) if resnet_dt else None, + activation_function=activation_function, + resnet=True, + ).serialize() + ) + i_in = i_ot + super().__init__(layers) + self.in_dim = in_dim + self.neuron = neuron + self.activation_function = activation_function + self.resnet_dt = resnet_dt + + def serialize(self) -> dict: + """Serialize the network to a dict. + + Returns + ------- + dict + The serialized network. + """ + return { + "in_dim": self.in_dim, + "neuron": self.neuron.copy(), + "activation_function": self.activation_function, + "resnet_dt": self.resnet_dt, + "layers": [layer.serialize() for layer in self.layers], + } + + @classmethod + def deserialize(cls, data: dict) -> "EmbeddingNet": + """Deserialize the network from a dict. + + Parameters + ---------- + data : dict + The dict to deserialize from. + """ + layers = data.pop("layers") + obj = cls(**data) + super(EmbeddingNet, obj).__init__(layers) + return obj diff --git a/source/tests/test_model_format_utils.py b/source/tests/test_model_format_utils.py index af8c4361c8..f26ebbaa8d 100644 --- a/source/tests/test_model_format_utils.py +++ b/source/tests/test_model_format_utils.py @@ -9,6 +9,7 @@ import numpy as np from deepmd_utils.model_format import ( + EmbeddingNet, NativeLayer, NativeNet, load_dp_model, @@ -90,6 +91,17 @@ def test_deserialize(self): np.testing.assert_array_equal(network[0]["resnet"], True) np.testing.assert_array_equal(network[1]["resnet"], True) + def test_embedding_net(self): + for ni, idt, act in itertools.product( + [1, 10], + [True, False], + ["tanh", "none"], + ): + en0 = EmbeddingNet(ni) + en1 = EmbeddingNet.deserialize(en0.serialize()) + inp = np.ones([ni]) + np.testing.assert_allclose(en0.call(inp), en1.call(inp)) + class TestDPModel(unittest.TestCase): def setUp(self) -> None: