-
-
Notifications
You must be signed in to change notification settings - Fork 75
/
test_coord.py
120 lines (105 loc) · 3.94 KB
/
test_coord.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import os
import json
import toml
from PIL import Image
from string import Template
import google.generativeai as genai
from google.ai.generativelanguage_v1beta.types import content
from pipeline.utils import upload_to_gemini, wait_for_files_active, prompts
MODEL_NAME = "gemini-1.5-pro-002"
def ask_gemini_for_coordinates(image_path, example_path, example_path2, example_path3, example_path4, example_path5, media_type):
# Create the model
generation_config = {
"temperature": 1,
"top_p": 0.95,
"top_k": 40,
"max_output_tokens": 8192,
"response_schema": content.Schema(
type = content.Type.OBJECT,
required = ["x_min", "y_min", "x_max", "y_max"],
properties = {
"x_min": content.Schema(
type = content.Type.NUMBER,
),
"y_min": content.Schema(
type = content.Type.NUMBER,
),
"x_max": content.Schema(
type = content.Type.NUMBER,
),
"y_max": content.Schema(
type = content.Type.NUMBER,
),
},
),
"response_mime_type": "application/json",
}
model = genai.GenerativeModel(
model_name=MODEL_NAME,
generation_config=generation_config,
)
files = [
upload_to_gemini(example_path, mime_type="image/png"),
upload_to_gemini(example_path2, mime_type="image/png"),
upload_to_gemini(example_path5, mime_type="image/png"),
upload_to_gemini(example_path3, mime_type="image/png"),
upload_to_gemini(example_path4, mime_type="image/png"),
upload_to_gemini(image_path, mime_type="image/png"),
]
wait_for_files_active(files)
chat_session = model.start_chat(
history=[
{
"role": "user",
"parts": [
files[0],
files[1],
files[2],
"These images are examples of figures present in the image. Refer to the RED rectangle's coordinate to understand which region to extract.",
],
},
{
"role": "user",
"parts": [
files[3],
files[4],
"These images are examples that there is no figure.",
],
},
{
"role": "user",
"parts": [
files[5],
],
},
]
)
prompt = prompts["extract_coordinate"]["prompt"]
prompt = Template(prompt).safe_substitute(type=media_type)
response = chat_session.send_message(prompt)
return json.loads(response.text)
image_path = "test_assets/imgs/4.png"
example_path = "test_assets/imgs/example.png"
example_path2 = "test_assets/imgs/example2.png"
example_path3 = "test_assets/imgs/example3.png"
example_path4 = "test_assets/imgs/example4.png"
example_path5 = "test_assets/imgs/example5.png"
image = Image.open(image_path) # Replace "image.jpg" with your image file
width, height = image.size
coordinate = ask_gemini_for_coordinates(image_path, example_path, example_path2, example_path3, example_path4, example_path5, "figure")
print(coordinate)
norm_left, norm_top, norm_right, norm_bottom = coordinate["x_min"], coordinate["y_min"], coordinate["x_max"], coordinate["y_max"]
if norm_left != 0 or norm_top != 0 or norm_right != 0 or norm_bottom != 0:
left = int(norm_left * width)
top = int(norm_top * height)
right = int(norm_right * width)
bottom = int(norm_bottom * height)
# left = int(norm_left)
# top = int(norm_top)
# right = int(norm_right)
# bottom = int(norm_bottom)
print(left, top, right, bottom)
cropped_img = image.crop((left, top, right, bottom))
cropped_img.save(f"test_assets/cropped/{os.path.basename(image_path)}")
else:
print("Figure not found")