From 305e9b5ad22b428501fd42d3730d73d2e09ad4c5 Mon Sep 17 00:00:00 2001 From: Hyukjin Kwon Date: Fri, 21 Dec 2018 16:09:30 +0800 Subject: [PATCH] [SPARK-26422][R] Support to disable Hive support in SparkR even for Hadoop versions unsupported by Hive fork ## What changes were proposed in this pull request? Currently, even if I explicitly disable Hive support in SparkR session as below: ```r sparkSession <- sparkR.session("local[4]", "SparkR", Sys.getenv("SPARK_HOME"), enableHiveSupport = FALSE) ``` produces when the Hadoop version is not supported by our Hive fork: ``` java.lang.reflect.InvocationTargetException ... Caused by: java.lang.IllegalArgumentException: Unrecognized Hadoop major version number: 3.1.1.3.1.0.0-78 at org.apache.hadoop.hive.shims.ShimLoader.getMajorVersion(ShimLoader.java:174) at org.apache.hadoop.hive.shims.ShimLoader.loadShims(ShimLoader.java:139) at org.apache.hadoop.hive.shims.ShimLoader.getHadoopShims(ShimLoader.java:100) at org.apache.hadoop.hive.conf.HiveConf$ConfVars.(HiveConf.java:368) ... 43 more Error in handleErrors(returnStatus, conn) : java.lang.ExceptionInInitializerError at org.apache.hadoop.hive.conf.HiveConf.(HiveConf.java:105) at java.lang.Class.forName0(Native Method) at java.lang.Class.forName(Class.java:348) at org.apache.spark.util.Utils$.classForName(Utils.scala:193) at org.apache.spark.sql.SparkSession$.hiveClassesArePresent(SparkSession.scala:1116) at org.apache.spark.sql.api.r.SQLUtils$.getOrCreateSparkSession(SQLUtils.scala:52) at org.apache.spark.sql.api.r.SQLUtils.getOrCreateSparkSession(SQLUtils.scala) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) ``` The root cause is that: ``` SparkSession.hiveClassesArePresent ``` check if the class is loadable or not to check if that's in classpath but `org.apache.hadoop.hive.conf.HiveConf` has a check for Hadoop version as static logic which is executed right away. This throws an `IllegalArgumentException` and that's not caught: https://github.com/apache/spark/blob/36edbac1c8337a4719f90e4abd58d38738b2e1fb/sql/core/src/main/scala/org/apache/spark/sql/SparkSession.scala#L1113-L1121 So, currently, if users have a Hive built-in Spark with unsupported Hadoop version by our fork (namely 3+), there's no way to use SparkR even though it could work. This PR just propose to change the order of bool comparison so that we can don't execute `SparkSession.hiveClassesArePresent` when: 1. `enableHiveSupport` is explicitly disabled 2. `spark.sql.catalogImplementation` is `in-memory` so that we **only** check `SparkSession.hiveClassesArePresent` when Hive support is explicitly enabled by short circuiting. ## How was this patch tested? It's difficult to write a test since we don't run tests against Hadoop 3 yet. See https://github.com/apache/spark/pull/21588. Manually tested. Closes #23356 from HyukjinKwon/SPARK-26422. Authored-by: Hyukjin Kwon Signed-off-by: Hyukjin Kwon --- .../scala/org/apache/spark/sql/api/r/SQLUtils.scala | 12 ++++++++++-- 1 file changed, 10 insertions(+), 2 deletions(-) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/api/r/SQLUtils.scala b/sql/core/src/main/scala/org/apache/spark/sql/api/r/SQLUtils.scala index becb05cf72aba..e98cab8b56d13 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/api/r/SQLUtils.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/api/r/SQLUtils.scala @@ -49,9 +49,17 @@ private[sql] object SQLUtils extends Logging { sparkConfigMap: JMap[Object, Object], enableHiveSupport: Boolean): SparkSession = { val spark = - if (SparkSession.hiveClassesArePresent && enableHiveSupport && + if (enableHiveSupport && jsc.sc.conf.get(CATALOG_IMPLEMENTATION.key, "hive").toLowerCase(Locale.ROOT) == - "hive") { + "hive" && + // Note that the order of conditions here are on purpose. + // `SparkSession.hiveClassesArePresent` checks if Hive's `HiveConf` is loadable or not; + // however, `HiveConf` itself has some static logic to check if Hadoop version is + // supported or not, which throws an `IllegalArgumentException` if unsupported. + // If this is checked first, there's no way to disable Hive support in the case above. + // So, we intentionally check if Hive classes are loadable or not only when + // Hive support is explicitly enabled by short-circuiting. See also SPARK-26422. + SparkSession.hiveClassesArePresent) { SparkSession.builder().sparkContext(withHiveExternalCatalog(jsc.sc)).getOrCreate() } else { if (enableHiveSupport) {